Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Converting a Complex Nested Dict into a Data Frame with Pandas json_normalize

  • vlogize
  • 2025-05-25
  • 2
Converting a Complex Nested Dict into a Data Frame with Pandas json_normalize
How do I convert this complex nested Dict into Pandaspythonjsonpandasapicsv
  • ok logo

Скачать Converting a Complex Nested Dict into a Data Frame with Pandas json_normalize бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Converting a Complex Nested Dict into a Data Frame with Pandas json_normalize или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Converting a Complex Nested Dict into a Data Frame with Pandas json_normalize бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Converting a Complex Nested Dict into a Data Frame with Pandas json_normalize

Learn how to transform nested dictionaries from API responses into a readable Pandas DataFrame suitable for Excel or CSV formatting.
---
This video is based on the question https://stackoverflow.com/q/71774753/ asked by the user 'Monil Shah' ( https://stackoverflow.com/u/5396086/ ) and on the answer https://stackoverflow.com/a/71775199/ provided by the user 'Ray A.' ( https://stackoverflow.com/u/7587035/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How do I convert this complex nested Dict into Pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Unlocking the Power of Pandas: How to Convert Complex Nested Dictionaries into DataFrames

In the world of data science and analytics, you're often faced with the challenge of manipulating complex data structures, especially when dealing with responses from APIs. Have you ever tried extracting data from a nested dictionary and converting it into a Pandas DataFrame, only to hit a wall? This can be a common issue when the data received is deeply nested, making direct conversion tricky. In this post, we will walk through the steps to effectively convert a complex nested dictionary into a Pandas DataFrame that is ready for analysis or export to Excel or CSV formats.

Understanding the Problem

To illustrate the issue, let’s assume you have called an API and received a JSON response similar to the following nested dictionary structure:

[[See Video to Reveal this Text or Code Snippet]]

The challenge you may face is flattening this structure so that it can be transformed into a readable DataFrame suitable for further analysis or export.

Step-by-Step Solution

Step 1: Setting Up Your Environment

Make sure you have the necessary libraries installed. You’ll need pandas and requests. You can install them using pip:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Importing Libraries

Start by importing the libraries in your Python script:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Retrieving API Data

Use the requests library to call the API and retrieve the data. Here’s an example of how to retrieve the data:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Normalizing the JSON Data

Now, the main step is using pd.json_normalize() to convert the nested dictionary into a DataFrame. Unfortunately, if you receive an error that states AttributeError: module 'pandas' has no attribute 'json_normalize', ensure you are using the latest version of Pandas. The correct code to normalize the data looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Step 5: Exploding Nested Lists

If some columns (like writers or publishers) are lists within the dictionary, you'll want to explode these to create separate rows for each entry:

[[See Video to Reveal this Text or Code Snippet]]

Step 6: Normalizing Nested JSON Structure

To further flatten the resulting DataFrame, you can normalize the JSON data structure in the exploded columns as follows:

[[See Video to Reveal this Text or Code Snippet]]

Repeat this step for any other nested columns, like publishers, using the same method. Your DataFrame will now have all relevant data in a structured, tabular format.

Step 7: Exporting Your DataFrame

Finally, you can export the structured DataFrame to an Excel or CSV file using:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Transforming complex nested dictionaries into a format that’s easy to work with can be a daunting task, but with the use of Pandas’ powerful tools like json_normalize(), it can be accomplished efficiently. By following the steps outlined in this guide, you can streamline your data analysis workflow and ensure that your data is ready for further processing or reporting. Now it's your turn to try out these steps with your API data and leverage the power of Pandas!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]