Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Achieving Constant Mean and Variance in Normal Distribution with Python

  • vlogize
  • 2025-08-02
  • 0
Achieving Constant Mean and Variance in Normal Distribution with Python
Mean variance of normal distribution for each seed in Pythonpythonpandasnumpyrandom
  • ok logo

Скачать Achieving Constant Mean and Variance in Normal Distribution with Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Achieving Constant Mean and Variance in Normal Distribution with Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Achieving Constant Mean and Variance in Normal Distribution with Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Achieving Constant Mean and Variance in Normal Distribution with Python

Learn how to ensure consistent mean and variance values across different normal distributions when using NumPy in Python.
---
This video is based on the question https://stackoverflow.com/q/76403552/ asked by the user 'KeplerNick123' ( https://stackoverflow.com/u/21939193/ ) and on the answer https://stackoverflow.com/a/76404787/ provided by the user 'Corralien' ( https://stackoverflow.com/u/15239951/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Mean, variance of normal distribution for each seed in Python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Achieving Constant Mean and Variance in Normal Distribution with Python

When working with random numbers and distributions in Python, particularly in fields like data science and statistics, one common requirement is to generate normally distributed data that maintains a consistent mean and variance. This can be particularly challenging when using random seeds to generate different datasets.

The Problem

You may have encountered a situation where using numpy.random.seed() allows you to produce reproducible random distributions. However, the challenge arises when the mean and variance of these distributions differ from your desired values. As demonstrated in your initial code, the output may vary significantly for each seed, which is not ideal when you wish to keep these parameters constant.

Example of the Issue

In your original code snippet, setting different random seeds produced the following output:

[[See Video to Reveal this Text or Code Snippet]]

As you can see, the means and variances are not constant across seeds.

The Solution

To achieve a constant mean and variance across different seeds while generating normally distributed data, you can implement a standard normalization technique known as the z-score normalization. This approach helps scale your random variables to meet the desired statistical properties.

Steps to Implement the Solution

Define Your Parameters: Set the mean (t_mean) and the target standard deviation (t_std) that you want to achieve for your dataset.

Generate Normally Distributed Random Variables: Use numpy.random.normal() to generate your random numbers, but be sure to initialize the data with appropriate mean and standard deviation.

Apply Standard Normalization: Adjust your generated numbers using the following formula:

[[See Video to Reveal this Text or Code Snippet]]

This will scale and shift your data based on the desired target mean and standard deviation.

Print the Results: Finally, calculate and print the mean and variance of the adjusted series to verify consistency.

Example Code Implementation

Here’s how you could write your code to incorporate these steps:

[[See Video to Reveal this Text or Code Snippet]]

Expected Output

Using the provided code, you should observe outputs like these:

[[See Video to Reveal this Text or Code Snippet]]

Notice how both the mean and variance remain very close to your target values of 50 and 3 across different seeds, providing the consistency you were looking for.

Conclusion

Achieving a consistent mean and variance in normally distributed data generated with random seeds can enhance your data analysis and simulations in Python. By applying a standard normalization approach, you can easily maintain control over these statistical parameters, ensuring your datasets remain reliable and reproducible.

Now you can confidently run your simulations without worrying about fluctuating mean and variance values!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]