Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding PCA and SVD for Best Fit Line in Python

  • vlogize
  • 2025-03-16
  • 1
Understanding PCA and SVD for Best Fit Line in Python
How to find best fit line using PCA in Python?pythonnumpymathpcasvd
  • ok logo

Скачать Understanding PCA and SVD for Best Fit Line in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding PCA and SVD for Best Fit Line in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding PCA and SVD for Best Fit Line in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding PCA and SVD for Best Fit Line in Python

Learn how to find the best fit line in Python using PCA and SVD. This guide explains the relationship between PCA and SVD with practical coding examples.
---
This video is based on the question https://stackoverflow.com/q/75510062/ asked by the user 'Joan Venge' ( https://stackoverflow.com/u/51816/ ) and on the answer https://stackoverflow.com/a/75510312/ provided by the user 'hschoell' ( https://stackoverflow.com/u/21118897/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to find best fit line using PCA in Python?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding PCA and SVD for Best Fit Line in Python

When working with data analysis and machine learning, you may encounter the terms Principal Component Analysis (PCA) and Singular Value Decomposition (SVD), especially when trying to find the best-fit line for a set of points. Although these concepts are closely related, they serve different purposes and are used in slightly different ways in code. In this post, we will clarify the differences between PCA and SVD, and then we will explore how to find the best fit line in Python using PCA.

The Relationship between PCA and SVD

Before diving into the coding aspects, it’s essential to understand how PCA and SVD are connected:

SVD: This is a mathematical technique used for factorization, which decomposes a matrix into three other matrices. SVD can be directly used on a data set to retrieve meaningful components.

PCA: This is a method applied to identify the directions of maximum variance in your data by using SVD. While you can independently perform PCA and SVD, they are often considered synonymous since PCA can be executed using SVD.

In summary, PCA utilizes SVD to achieve its goal of identifying principal components in a dataset.

Finding the Best Fit Line Using PCA

To illustrate how to implement PCA for calculating the best fit line in Python, let’s break it down step-by-step. We’ll start with some data points and code that provides an example of applying PCA to get the best fit line.

Step 1: Initialize Data Points

You can represent your data points in a NumPy array, as shown below:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Center the Data Points

Before applying PCA, the data points need to be centered around the mean. This ensures that the analysis reflects deviations from the average rather than the absolute values.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Calculate the Covariance Matrix

Next, you need to calculate the covariance matrix of the centered data. This step is crucial as it represents how much the dimensions vary together.

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Perform PCA Using SVD

By applying SVD on the covariance matrix, you can extract the principal components that will help identify the best fit line.

[[See Video to Reveal this Text or Code Snippet]]

Step 5: Determine the Best Fit Line

The first column of the matrix U obtained from SVD represents the direction of the best fit line. You can access it as follows:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In summary, both PCA and SVD help us analyze and interpret data more effectively by finding the best fit line using mathematical methods. While the implementation of SVD directly derives principal components, the process outlined above demonstrates how PCA can leverage SVD to achieve the same results.

By understanding and applying these methods in Python, you can effectively discern patterns and relationships in your data, whether for machine learning, data analysis, or visualization tasks.

If you’re looking to dive deeper into the applications of PCA and SVD in your projects, there’s a wealth of resources available online that can help you expand your knowledge.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]