Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Why plots from Jupyter Notebook and Python code are Different: Understanding Matplotlib Behavior

  • vlogize
  • 2025-04-09
  • 2
Why plots from Jupyter Notebook and Python code are Different: Understanding Matplotlib Behavior
Matplotlib : why plot save from jupyter notebook and from Python code are different?python 3.xmatplotlibjupyter notebookbar chart
  • ok logo

Скачать Why plots from Jupyter Notebook and Python code are Different: Understanding Matplotlib Behavior бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Why plots from Jupyter Notebook and Python code are Different: Understanding Matplotlib Behavior или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Why plots from Jupyter Notebook and Python code are Different: Understanding Matplotlib Behavior бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Why plots from Jupyter Notebook and Python code are Different: Understanding Matplotlib Behavior

Discover the reasons behind the differences in saved plots from Jupyter Notebook and Python scripts. Learn how to ensure consistency in your bar charts with Matplotlib!
---
This video is based on the question https://stackoverflow.com/q/75592581/ asked by the user 'Jeremy Duval' ( https://stackoverflow.com/u/19540427/ ) and on the answer https://stackoverflow.com/a/75593762/ provided by the user 'Jeremy Duval' ( https://stackoverflow.com/u/19540427/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Matplotlib : why plot save from jupyter notebook and from Python code are different?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Why plots from Jupyter Notebook and Python code are Different

When working with data visualization in Python, especially using libraries like Matplotlib, you may encounter unexpected behavior when saving plots from different environments. One question often arises: Why do the plots saved from a Jupyter notebook differ from those generated in a standalone Python script? If you've recently transitioned your code from a notebook to a Python .py file only to find that your bar charts look different, you're not alone!

In this guide, we will not only address this issue but also provide clarity on how to reproduce consistent plots across both environments.

Understanding the Problem

You might have written a function in both your Jupyter notebook and a .py file that looks the same but produces plots that are visually inconsistent. For instance, you might have the same data and parameters in both instances, yet the appearance, size, or resolution of the plots could vary significantly.

This leads us to investigate and understand the fundamental differences in how Jupyter notebooks and Python scripts handle certain aspects of plotting.

The Function Breakdown

Let’s take a closer look at the core function you’re working with. Here’s a simplified overview of the dict_bar_plot function:

[[See Video to Reveal this Text or Code Snippet]]

Key Components of the Function

Parameter Initialization: Parameters allow customization of width, height, title, and saving behavior of the plot.

Plot Creation: The function creates a bar chart and customizes the rotations and labels of the x-ticks.

Recognizing the Problem Area

The issue arises from the order of operations in your plotting function. As pointed out by the community, a critical point of failure is the placement of the line that sets the figure size:

[[See Video to Reveal this Text or Code Snippet]]

Why is This Important?

The location of this line in your code affects how Matplotlib renders the plot. If you set the figure size parameters after the bar chart has been created (which is the case in your function), it will not have any effect on that specific plot. This could result in different appearances when executing in Jupyter versus running the script due to different default settings in each environment.

Solution: Correcting the Code

To ensure that your plots appear the same across both Jupyter notebooks and standalone Python scripts, it is essential to set the figure size before you create any plots. Here's the corrected version of your function:

[[See Video to Reveal this Text or Code Snippet]]

Final Thoughts

By adjusting the position of the plt.rcParams["figure.figsize"] line, you will ensure your plots are consistent across both platforms. Remember, the order of operations when using libraries like Matplotlib can significantly influence the outcome of your visualizations.

Now that you've seen how to prevent plot discrepancies between your Jupyter notebook and Python script, you can confidently continue your data analysis and visualization journey!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]