Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding scipy.optimize.minimize: Why is it Returning the Initial Value?

  • vlogize
  • 2025-04-05
  • 0
Understanding scipy.optimize.minimize: Why is it Returning the Initial Value?
Why does `scipy.optimize.minimize` always return the initial value?pythonscipy
  • ok logo

Скачать Understanding scipy.optimize.minimize: Why is it Returning the Initial Value? бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding scipy.optimize.minimize: Why is it Returning the Initial Value? или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding scipy.optimize.minimize: Why is it Returning the Initial Value? бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding scipy.optimize.minimize: Why is it Returning the Initial Value?

Discover why `scipy.optimize.minimize` isn't optimizing your function and explore solutions to ensure more accurate results.
---
This video is based on the question https://stackoverflow.com/q/77898398/ asked by the user 'Alex' ( https://stackoverflow.com/u/1581090/ ) and on the answer https://stackoverflow.com/a/77902200/ provided by the user 'Nick ODell' ( https://stackoverflow.com/u/530160/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Why does `scipy.optimize.minimize` always return the initial value?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding scipy.optimize.minimize: Why is it Returning the Initial Value?

When working with optimization in Python, particularly using the scipy.optimize.minimize function, you may encounter a situation where it returns the initial value as the result, leaving you puzzled. This guide delves into why minimize may not work as expected and provides practical solutions to help overcome this issue.

The Problem: The Function Isn't Optimizing

In the given example, the user has a working piece of code that applies scipy.optimize.minimize to find an optimal value, yet the output consistently matches the input – leaving them stranded with the initial value. Upon analyzing the provided code, the primary reason for this behavior can be traced back to how minimize interprets the function being optimized.

Why Does This Happen?

The underlying cause is that minimize assumes the function it is trying to optimize is differentiable. However, in this case, the function defined to minimize overlap is not differentiable. When minimize evaluates the function at two points that differ slightly (by 10^-8), if both yield the same result, minimize deduces that the function is flat around that point. This lack of sensitivity to smaller shifts prevents minimize from effectively finding a better solution.

Example of Observed Behavior

A simple print statement added to the overlap function can illustrate the issue:

[[See Video to Reveal this Text or Code Snippet]]

When this prints, it reveals the same output for closely spaced input values:

[[See Video to Reveal this Text or Code Snippet]]

Since both results are the same, minimize concludes that any further adjustments won't yield better results.

Solutions to Optimize the Function

To tackle the problem and enable effective optimization, consider the following strategies:

1. Rewrite the Function

Modify the function in a manner that it becomes differentiable. This means that as the input approaches the true optimal value, the result should vary to reflect that:

Example: Adjust the logic in the overlap function to provide gradually smaller outputs when the shift approaches the correct value.

2. Use Brute Force Approaches

Since only integer adjustments influence the output, loop through all possible integer shifts that may yield better results:

Implementation: Create a simple loop that iterates through a range of possible shift values and evaluates the resulting overlaps.

3. Choose a Different Optimizer

Seek an optimization algorithm that doesn't rely on differentiability. Some options include:

differential_evolution: This can often handle more challenging optimization landscapes.

4. Adjust minimize Function Parameters

You can tweak the parameters of the minimize function to change its behavior. Consider the following adjustments:

Use larger steps: Set the eps option to a larger value.

Change the method: Switch from BFGS to L-BFGS-B for particularly tough optimization tasks.

Here's an example of how you can implement this modification:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By understanding the limitations of scipy.optimize.minimize and redefining your approach, you can overcome the initial value problem in optimization tasks. Whether through rewriting your function, employing brute force strategies, or choosing more robust optimization algorithms, there are multiple pathways to achieving reliable optimization results.

If you find yourself facing similar challenges in your data science or machine learning projects, feel free to experiment with these solutions!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]