Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Merging DataFrames in PySpark with Multiple Conditions

  • vlogize
  • 2025-04-15
  • 2
Efficiently Merging DataFrames in PySpark with Multiple Conditions
merging filter multiple condition on pysparkpythondataframepyspark
  • ok logo

Скачать Efficiently Merging DataFrames in PySpark with Multiple Conditions бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Merging DataFrames in PySpark with Multiple Conditions или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Merging DataFrames in PySpark with Multiple Conditions бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Merging DataFrames in PySpark with Multiple Conditions

Explore how to merge DataFrames in PySpark using multiple conditions efficiently. Learn with examples and code snippets for better understanding.
---
This video is based on the question https://stackoverflow.com/q/71949016/ asked by the user 'Nabih Bawazir' ( https://stackoverflow.com/u/7585973/ ) and on the answer https://stackoverflow.com/a/71950105/ provided by the user 'wwnde' ( https://stackoverflow.com/u/8986975/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: merging filter multiple condition on pyspark

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Merging DataFrames with Multiple Conditions in PySpark

When working with large datasets in PySpark, merging DataFrames with multiple conditions can become quite challenging. Understanding how to efficiently filter and combine these datasets is essential for effective data manipulation and analysis. In this guide, we will explore a practical example that demonstrates how to merge two DataFrames based on specific filtering conditions.

Understanding the Problem

Let's consider two datasets, sparkDF1 and sparkDF2, structured as follows:

Dataset Overview

sparkDF1

[[See Video to Reveal this Text or Code Snippet]]

sparkDF2

[[See Video to Reveal this Text or Code Snippet]]

Our goal is to create a new DataFrame (sparkDF) that selects records from sparkDF2 for entries with month=5 in Year=2020 and earlier months from sparkDF1. This means we want to join and filter these DataFrames under certain conditions.

Proposed Solution

Option 1: Using Filter and unionByName

To achieve the desired results, we can utilize the where method to filter the records from both DataFrames and then combine them using unionByName. Here’s how you can do it:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code:

Filters: We define two conditions (s for df1 and s1 for df2) to filter out the records not needed.

Union: The unionByName method combines the two DataFrames while preserving the column names.

Ordering: Finally, we order the resulting DataFrame by the Id column for clarity in the output.

Option 2: Using Pandas UDF

If you're familiar with Pandas and prefer using it, PySpark allows the use of Pandas UDF (User Defined Functions) for such operations. Although Pandas UDFs incur a shuffle when working with multiple DataFrames, you can use the following approach:

Define a mask filter function.

Utilize the cogroup method for grouping the DataFrames.

Apply the mask filter:

[[See Video to Reveal this Text or Code Snippet]]

Key Points:

Masking: The mask function helps selectively replace entries based on conditions.

Combining: The combine_first method merges the DataFrames, favoring non-NA values from l.

Conclusion

Both methods presented can effectively achieve the merging of DataFrames with multiple conditions in PySpark. Using where and unionByName is more straightforward and keeps performance in focus, while the Pandas UDF approach might be preferable for those strongly inclined towards Pandas syntax.

By understanding the different ways to merge DataFrames in PySpark, you'll gain greater flexibility and efficiency in your data processing tasks. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]