Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть TECHNO-ECONOMIC OPTIMIZATION-EV CHARGING LOADS-WIND TURBINE-15-BUS RDS-JAYA ALGORITHM

  • VERILOG COURSE TEAM-ELECTRICAL PROJECTS
  • 2025-12-05
  • 15
TECHNO-ECONOMIC OPTIMIZATION-EV CHARGING LOADS-WIND TURBINE-15-BUS RDS-JAYA ALGORITHM
  • ok logo

Скачать TECHNO-ECONOMIC OPTIMIZATION-EV CHARGING LOADS-WIND TURBINE-15-BUS RDS-JAYA ALGORITHM бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно TECHNO-ECONOMIC OPTIMIZATION-EV CHARGING LOADS-WIND TURBINE-15-BUS RDS-JAYA ALGORITHM или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку TECHNO-ECONOMIC OPTIMIZATION-EV CHARGING LOADS-WIND TURBINE-15-BUS RDS-JAYA ALGORITHM бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео TECHNO-ECONOMIC OPTIMIZATION-EV CHARGING LOADS-WIND TURBINE-15-BUS RDS-JAYA ALGORITHM

DESIGN DETAILS
The rapid proliferation of electric vehicles (EVs) has introduced significant operational challenges in distribution networks (DNs), such as increased peak demand, voltage instability, and potential grid congestion. To address these issues, this study presents an optimal operational strategy for electric vehicle charging stations (EVCSs) integrated with renewable energy resources (RERs), specifically wind energy systems, within distribution networks.

A two-stage multi-objective optimization framework is developed to ensure secure, reliable, and economically efficient DN operation under high penetration levels of EVCSs and RERs.

In Stage 1, the power demand profiles of EVCSs equipped with Level 1 (AC), Level 2 (AC), and Level 3 (DC) charging units are determined to maintain voltage stability and network security while effectively meeting EV charging requirements.

In Stage 2, wind turbine (WT) systems are optimally integrated into the network to maximize economic benefits and minimize power purchases from the main grid without compromising reliability.
The proposed framework utilizes the Jaya algorithm to minimize operational costs and coordinate EV charging loads with renewable energy generation. The optimization considers multiple objectives, including power loss reduction, voltage deviation minimization, peak demand management, and cost optimization. Stochastic variations in wind speed and EV charging demand are modeled using probabilistic forecasting techniques to accurately represent real-world uncertainties.

The framework is validated on the 15-bus radial distribution system under varying penetration levels of EVs and renewable energy sources, demonstrating notable improvements in techno-economic performance, grid reliability, and voltage profile stability.

OBJECTIVE FUNCTIONS
This MATLAB design formulates a two-stage optimization problem.

Stage 1 focuses on determining the optimal operation of EVCSs through a multi-objective function that includes the power loss index, voltage deviation index, voltage stability index, and grid power purchase cost index

Stage 2 determines the optimal operation of solar PV and wind turbine (WT) systems based on the network configuration obtained from Stage 1.

This stage extends the initial formulation by introducing two additional objectives representing the economic benefits for WT owners through the sale of renewable energy to the distribution network at predefined contract rates.
Each component of the multi-objective function is mathematically defined as follows:
Power loss index(PLSI)=(Power loss with change in network)/(Power loss with basecase)
Voltage deviation index(VDI)=(VD with change in network)/(VD with basecase)
Voltage stability index(VSI)=(VS with change in network)/(VS with basecase)
Power purchased from grid index(PPGI)=(Power purchase from the grid with change in network)/(Power purchase from the grid with basecase)

REFERENCES
Reference Paper-1: Optimal operation of electric vehicle charging stations with solar and wind energy systems in distribution network using JAYA algorithm
Author’s Name: Kushal Manohar Jagtap, Farhad Ilahi Bakhsh, Ramya Kuppusamy, Yuvaraja Teekaraman
Source: Elsevier
Year:2025

Request source code for academic purpose, fill REQUEST FORM below,
http://www.verilogcourseteam.com/requ...

If you need Matlab p-code(encrypted files) to check the results, contact us by email to [email protected]

You may also contact +91 7904568456 by WhatsApp Chat, for paid services. We are also available on Telegram and Signal.

Visit Website: http://www.verilogcourseteam.com/

Visit Our Social Media
Like our Facebook Page:   / verilogcourseteam  
Subscribe:    / @verilogteam  
Subscribe:    / verilogcourseteammatlabproject  
Subscribe:    / verilogcourseteam  

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]