Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Improve Performance with Vectorized Operations in Numpy

  • vlogize
  • 2025-08-25
  • 0
Improve Performance with Vectorized Operations in Numpy
Advice on vectorizing block-wise operations in Numpypythonperformancenumpyscipyscientific computing
  • ok logo

Скачать Improve Performance with Vectorized Operations in Numpy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Improve Performance with Vectorized Operations in Numpy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Improve Performance with Vectorized Operations in Numpy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Improve Performance with Vectorized Operations in Numpy

Discover how to optimize block-wise operations in Numpy by leveraging vectorization for enhanced performance in statistical computations.
---
This video is based on the question https://stackoverflow.com/q/64236614/ asked by the user 'shaunakde' ( https://stackoverflow.com/u/894903/ ) and on the answer https://stackoverflow.com/a/64276423/ provided by the user 'meTchaikovsky' ( https://stackoverflow.com/u/8366805/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Advice on vectorizing block-wise operations in Numpy

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Enhancing Performance with Vectorized Operations in Numpy

When working on image processing tasks, particularly ones that involve statistical operations on patches extracted from images, performance is often a key concern. Many developers resort to using nested loops for such tasks, which can lead to inefficient code. This guide offers insights into how you can optimize your code by using vectorization with Numpy, making your computations not only faster but also cleaner and more maintainable.

The Problem: Inefficient Patch Processing

In the scenario at hand, the goal is to extract NxN patches from two images and compute a distance metric between these patches. The initial implementation involves the use of nested loops to prepare these patches, resulting in a significant processing time (approximately 10 seconds). Below is a simplified version of the code used for patch extraction:

[[See Video to Reveal this Text or Code Snippet]]

While this approach serves its purpose, it can be improved significantly. The subsequent computations using multiprocessing also do not yield the expected speedup, leading to frustration.

The Solution: Vectorization with apply_along_axis

An effective way to boost performance in this case is to utilize Numpy’s apply_along_axis functionality, which allows you to apply a function to 1-D slices of an N-D array. This eliminates the need for the repetitive cauchy_schwartz function call per patch.

Step-by-step Transformation

Preparation of Patches: Assume you already have the params array ready, which contains the flattened patches of both images.

[[See Video to Reveal this Text or Code Snippet]]

Here, params has a shape of (3, 2, 100) indicating:

3 patches

2 images

100 entries for each flattened patch.

Calculate Histograms: Instead of using the cauchy_schwartz method, compute the histograms using apply_along_axis.

[[See Video to Reveal this Text or Code Snippet]]

Compute Distance Metrics: Finally, calculate the required metrics without looping through params individually:

[[See Video to Reveal this Text or Code Snippet]]

Benefits of Vectorization

Speed: Vectorized operations in Numpy are executed in compiled C code, significantly speeding up processing compared to interpreted Python loops.

Readability: The resulting code is cleaner and easier to understand, reducing the cognitive load when maintaining the code.

Scalability: This approach scales much better, especially with larger datasets, ensuring that performance remains robust as data sizes increase.

Conclusion

By substituting nested loops with Numpy's vectorization capabilities, you can achieve substantial performance improvements in block-wise operations. This guide highlighted the initial inefficient approach and walked through a more efficient and elegant solution using apply_along_axis. Implementing similar strategies in your projects can greatly enhance your workflow and productivity.

Feel free to experiment with optimizing the patch extraction process and let us know your experiences! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]