Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Calculate Low Of Day (LOD) for Stock Data Using Python Pandas

  • vlogize
  • 2025-05-25
  • 5
How to Calculate Low Of Day (LOD) for Stock Data Using Python Pandas
Get stock Low of Day (LOD) price for incomplete daily bar using minute bar data (multiple stocks mulpandasdataframeloopsstockquotesohlc
  • ok logo

Скачать How to Calculate Low Of Day (LOD) for Stock Data Using Python Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Calculate Low Of Day (LOD) for Stock Data Using Python Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Calculate Low Of Day (LOD) for Stock Data Using Python Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Calculate Low Of Day (LOD) for Stock Data Using Python Pandas

Learn how to efficiently calculate the Low Of Day (LOD) for multiple stocks in an incomplete daily bar data using Python Pandas without triggering errors.
---
This video is based on the question https://stackoverflow.com/q/69145819/ asked by the user 'Trippy Dippy' ( https://stackoverflow.com/u/9602387/ ) and on the answer https://stackoverflow.com/a/69145885/ provided by the user 'Andrej Kesely' ( https://stackoverflow.com/u/10035985/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Get stock Low of Day (LOD) price for incomplete daily bar using minute bar data (multiple stocks, multiple sessions in one df) SettingWithCopyWarning

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Calculate Low Of Day (LOD) for Stock Data Using Python Pandas

Working with financial data can be complex, particularly when you're trying to derive insights from high-frequency trading information like minute-by-minute stock prices. A common scenario is needing to calculate the Low Of Day (LOD) price for stocks where you have minute data but not yet completed daily bars.

In this post, we'll explore how to calculate the Low Of Day for multiple stocks across various sessions in a pandas DataFrame, and address a common issue related to SettingWithCopyWarning.

Problem Statement

Imagine you have a DataFrame containing minute-level stock data for multiple stocks. Each stock has multiple trading sessions throughout a day, and you want to populate the LOD column, representing the lowest price of the day up to each minute in the DataFrame. Here’s a small excerpt of what the data looks like:

[[See Video to Reveal this Text or Code Snippet]]

Your goal is to compute the LOD for every minute and fill the corresponding LOD column as demonstrated below:

[[See Video to Reveal this Text or Code Snippet]]

Understanding the Current Approach

The initially provided approach uses a loop to manually track the session and compute the LOD. While this gets the job done, it can lead to the dreaded SettingWithCopyWarning. This happens when you're trying to modify a subset of a DataFrame without being explicit about your intentions, potentially leading to unintended consequences.

Here’s the current loop-based solution:

[[See Video to Reveal this Text or Code Snippet]]

However, we have a better option!

A More Efficient Solution With Pandas

We can utilize the power of pandas' built-in functions to streamline our LOD calculation. With groupby and expanding, we can efficiently calculate the LOD without looping through each row, which reduces complexity and avoids warnings.

Implementing the Solution

Here’s how to compute the LOD using pandas in a more efficient way:

Ensure your time data is in the correct datetime format and sorted.

Use the groupby method combined with expanding().min() to calculate the LOD.

Here’s the code:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

Data Conversion: Ensure the Time column is in datetime format and sorted by Symbol and Time.

Group By Symbol: The groupby function groups the data by the Symbol column.

Expanding Minimum: The expanding().min() function calculates the minimum of the Low prices for all previous rows, effectively capturing the Low Of Day up to that point.

Values Assignment: The .values ensures you directly assign the calculated minimums back to the new column LOD.

Result

After implementing this code, your DataFrame should now accurately display the LOD for each stock's session:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In conclusion, calculating the Low Of Day (LOD) for stock data can be achieved efficiently using Pandas' built-in capabilities. The use of groupby() and expanding() methods not only simplifies the calculation but also eliminates common pitfalls like the SettingWithCopyWarning. Implement this solution to enhance your data handling and analysis for high-frequency trading data!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]