Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть 🔍 Understanding Naïve Bayes Classification | Machine Learning for Fast & Efficient Predictions

  • Chain
  • 2025-11-30
  • 21
🔍 Understanding Naïve Bayes Classification | Machine Learning for Fast & Efficient Predictions
#AI#ML
  • ok logo

Скачать 🔍 Understanding Naïve Bayes Classification | Machine Learning for Fast & Efficient Predictions бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно 🔍 Understanding Naïve Bayes Classification | Machine Learning for Fast & Efficient Predictions или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку 🔍 Understanding Naïve Bayes Classification | Machine Learning for Fast & Efficient Predictions бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео 🔍 Understanding Naïve Bayes Classification | Machine Learning for Fast & Efficient Predictions

Hi Everyone !

Naïve Bayes is a Supervised Learning Algorithm based on probability theory, making it one of the fastest and most interpretable models in Natural Language Processing, fraud detection, and recommendation systems.

📊 What is Naïve Bayes Classification?
Naïve Bayes differs from other ML models by:
✅ Using probabilities to classify data.
✅ Assuming feature independence for simplicity and efficiency.
✅ Handling high-dimensional data with ease.

📌 Types of Naïve Bayes Classifiers & Their Use Cases
1️⃣ Gaussian Naïve Bayes (For Continuous Data)
✅ Assumes that features follow a normal distribution (bell curve).
✅ Used in medical diagnosis, stock market predictions, and real-time forecasting.

2️⃣ Bernoulli Naïve Bayes (For Binary Features)
✅ Features are binary (0 or 1, Yes or No, Spam or Not Spam).
✅ Used in spam detection, fraud detection, and recommendation systems.

3️⃣ Multinomial Naïve Bayes (For Text Data & Word Frequency)
✅ Used when features are word counts or term frequencies.
✅ Used in sentiment analysis, news classification, and document categorization.

📌 How Naïve Bayes Works?
1️⃣ Calculate prior probabilities for each class.
2️⃣ Compute likelihood of each feature given the class.
3️⃣ Apply Bayes’ Theorem to get final probabilities.
4️⃣ Choose the class with the highest probability.

📉 Why Naïve Bayes Works Despite Its Simplistic Assumptions?
✅ The independence assumption is rarely true but still works well in practice.
✅ Works exceptionally well for text classification and real-time predictions.

💡 Real-World Applications of Naïve Bayes Classification
✅ Spam Filtering: Identifies spam emails based on word occurrence.
✅ Sentiment Analysis: Classifies customer reviews as positive or negative.
✅ Medical Diagnosis: Predicts diseases based on symptoms.
✅ Fraud Detection: Analyzes transaction patterns for fraud risk.

📌 Advantages of Naïve Bayes Classification
✅ Fast, even with large datasets.
✅ Highly interpretable compared to deep learning models.
✅ Performs well in text-based applications.

⚠️ Limitations:
❌ Assumes feature independence (which may not always be true).
❌ Struggles with correlated features.
❌ Needs large datasets to provide accurate probability estimates.

#MachineLearning #NaiveBayes #AI #DataScience #Classification #SupervisedLearning #Python #MLforBeginners #AIforBusiness #TextClassification #SpamDetection #PredictiveAnalytics

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]