Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Drop Duplicate Rows in a DataFrame and Create New Columns from Deleted Data

  • vlogize
  • 2025-04-08
  • 0
How to Drop Duplicate Rows in a DataFrame and Create New Columns from Deleted Data
Drop rows with duplicate column values in a dataframe and create a new column with secondary columnpythonpython 3.xdataframe
  • ok logo

Скачать How to Drop Duplicate Rows in a DataFrame and Create New Columns from Deleted Data бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Drop Duplicate Rows in a DataFrame and Create New Columns from Deleted Data или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Drop Duplicate Rows in a DataFrame and Create New Columns from Deleted Data бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Drop Duplicate Rows in a DataFrame and Create New Columns from Deleted Data

A step-by-step guide on how to remove duplicate rows from a pandas DataFrame while retaining necessary data in new columns. Perfect for beginners looking to clean up their data efficiently!
---
This video is based on the question https://stackoverflow.com/q/73537336/ asked by the user 'buckrogers' ( https://stackoverflow.com/u/19875565/ ) and on the answer https://stackoverflow.com/a/73544474/ provided by the user 'SergFSM' ( https://stackoverflow.com/u/18344512/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Drop rows with duplicate column values in a dataframe and create a new column with secondary column data

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Drop Duplicate Rows in a DataFrame and Create New Columns from Deleted Data

When working with data in a DataFrame, duplicates can be a major headache. They can distort analysis and lead to inaccurate results. In this guide, we'll tackle the problem of removing rows with duplicate values in a DataFrame while keeping important information intact in new columns. Whether you are a beginner in programming or just looking to clarify your understanding of data manipulation in Python using pandas, this guide is for you.

Understanding the Problem

Suppose you have a DataFrame that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Requirements:

You want to remove duplicate IDs from the id column.

For the deleted IDs, you want to import their values from columns a and b into new columns in the remaining rows.

For instance, after processing, the DataFrame should appear as follows:

[[See Video to Reveal this Text or Code Snippet]]

Solution Approach

To achieve this functionality in Python using pandas, we can employ a combination of groupby() and Series. Here's a step-by-step guide on how to implement this solution.

Step 1: Group the Data

First, we'll group the DataFrame by the id column. This allows us to collect all occurrences of each ID, which is essential to removing duplicates while retaining data.

Step 2: Apply a Function to Retain Values

Next, we will apply a function that flattens the a and b columns and facilitates the creation of new columns from the values of these duplicates.

Step 3: Add New Columns

Finally, we'll use the results from our function to establish new columns for the dropped duplicate values in the DataFrame.

Example Code

Here is how you can implement the above steps in your code:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of Code:

We created a DataFrame df containing sample data.

We used groupby('id') to group the data based on the id column.

The lambda function lambda x: x[['a', 'b']].values.ravel() flattens the relevant columns for each group.

The apply(pd.Series) constructs a new DataFrame from the flattened values.

Conclusion

Cleaning up your data by removing duplicates while preserving important information can indeed be challenging. With the method outlined here, you’ll efficiently manage duplicates and maintain necessary data, allowing for cleaner, more accurate analyses.

If you have any questions or need further assistance on pandas functionalities, feel free to leave a comment below! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]