Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Finding the Longest Version of Names in Python: A Guide to Named Entity Extraction

  • vlogize
  • 2025-04-15
  • 1
Finding the Longest Version of Names in Python: A Guide to Named Entity Extraction
Python: finding longest version of namespythonstring
  • ok logo

Скачать Finding the Longest Version of Names in Python: A Guide to Named Entity Extraction бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Finding the Longest Version of Names in Python: A Guide to Named Entity Extraction или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Finding the Longest Version of Names in Python: A Guide to Named Entity Extraction бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Finding the Longest Version of Names in Python: A Guide to Named Entity Extraction

Discover how to efficiently find the longest version of names in a set using Python and the Stanford's Stanza NLP library. Simplify your entity extraction process!
---
This video is based on the question https://stackoverflow.com/q/75113685/ asked by the user 'Robert Alexander' ( https://stackoverflow.com/u/7800760/ ) and on the answer https://stackoverflow.com/a/75113842/ provided by the user 'Samwise' ( https://stackoverflow.com/u/3799759/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Python: finding longest version of names

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Finding the Longest Version of Names in Python: A Guide to Named Entity Extraction

In the vast world of Natural Language Processing (NLP), accurately extracting named entities, particularly people's names, can be crucial. A common scenario arises when you extract names from a document and are left with various forms of the same name — often abbreviated or incomplete versions. Resolving this to maintain just the most complete versions is the challenge at hand. In this guide, we will explore how to achieve this with Python, particularly using the Stanford's Stanza NLP library.

The Challenge

Let's say you have a set of names extracted from a news article, which might look like this:

[[See Video to Reveal this Text or Code Snippet]]

In this list, we want to identify the longest version of each name and remove the shorter versions. For example:

Ursula von der Leyen should replace von der Leyen

Giorgia Meloni should replace Meloni

The desired outcome is:

[[See Video to Reveal this Text or Code Snippet]]

The Initial Attempt

The initial approach taken might look something like this:

[[See Video to Reveal this Text or Code Snippet]]

In this function, the goal is to check if a longer name contains a reference name and update our set accordingly. However, this approach has a few inefficiencies and edge cases that need addressing.

A More Efficient Solution

Recognizing that the provided solution isn’t the most efficient (O(N²)), let's delve into alternative methods to streamline the process, especially when working with sets of names where performance matters less if the dataset is manageable in size.

Using Set Comprehension

One of the most effective alternatives involves using a set comprehension to filter out names. Here’s a simple way to achieve it:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

This code creates a new set, resulting_names, that includes only those names for which no other name in the names set contains that name as a substring.

The use of any() checks every name to determine if it overlaps while excluding itself from the comparison.

Benefits of This Method

Readability: The use of set comprehensions makes the code easier to read and understand.

Efficiency: Though still not linear, this method is significantly more efficient than checking each name pair-wise because it reduces the number of operations needed.

Conclusion

In conclusion, while extracting and cleanly formatting names in Python can initially seem daunting, there are efficient ways to achieve your goal with just a few lines of code. Whether you stick to simplistic operations or delve into more advanced structures like dictionaries for overlapping names, the methods we discussed today lay down a solid foundation for your NLP tasks.

Feel free to explore and modify these examples in your projects, and soon you'll be managing names like a pro. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]