TP, FP, TN, FN, Accuracy, Precision, Recall, F1-Score, Sensitivity, Specificity, ROC, AUC

Описание к видео TP, FP, TN, FN, Accuracy, Precision, Recall, F1-Score, Sensitivity, Specificity, ROC, AUC

In this video, we cover the definitions that revolve around classification evaluation - True Positive, False Positive, True Negative, False Negative, Accuracy, Precision, Recall, F1-Score, Sensitivity, Specificity, ROC, AUC

These metrics are widely used in machine learning, data science, and statistical analysis.

#machinelearning #datascience #statistics #explanation #explained

VIDEO CHAPTERS
0:00 Introduction
1:15 True Positive, False Positive, True Negative, False Negative
6:08 Accuracy, Precision, Recall, F1-Score
8:59 Sensitivity, Specificity
10:30 ROC, AUC

Комментарии

Информация по комментариям в разработке