Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Converting NA Values to 0 in Specific Columns Using dplyr's mutate and across

  • vlogize
  • 2025-05-27
  • 0
Converting NA Values to 0 in Specific Columns Using dplyr's mutate and across
Convert NA to 0 in columns selected by name using dplyr mutate acrossnadplyr
  • ok logo

Скачать Converting NA Values to 0 in Specific Columns Using dplyr's mutate and across бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Converting NA Values to 0 in Specific Columns Using dplyr's mutate and across или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Converting NA Values to 0 in Specific Columns Using dplyr's mutate and across бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Converting NA Values to 0 in Specific Columns Using dplyr's mutate and across

Learn how to efficiently convert `NA` values into `0` in selected columns using R's `dplyr` package with `mutate` and `across`. This guide breaks down the solution using simple examples for easy comprehension.
---
This video is based on the question https://stackoverflow.com/q/66532820/ asked by the user 'Mark Davies' ( https://stackoverflow.com/u/12452893/ ) and on the answer https://stackoverflow.com/a/66532957/ provided by the user 'Gregor Thomas' ( https://stackoverflow.com/u/903061/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Convert NA to 0 in columns selected by name using dplyr mutate across

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Converting NA Values to 0 in Specific Columns using dplyr

Handling missing data is a common task in data analysis with R. If you're working with data frames and want to replace NA values with 0 specifically in columns that contain "Wt" in the header, you might run into some challenges. This guide will walk you through how to accomplish this using the dplyr package, specifically with the mutate() and across() functions.

The Problem

Imagine you have a dataset that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Here, CheWt and LatWt contain NA values that you want to replace with 0, while leaving the other columns intact. However, attempting to do this with the following code can lead to an error:

[[See Video to Reveal this Text or Code Snippet]]

The error you may encounter states that the replace function is missing arguments. Thus, we need to adjust our approach to properly handle the NA values.

The Solution

Using replace with across()

To successfully replace NA values with 0, you need to specify the replace() function correctly. The replace() function requires three arguments: the value, the index of values to replace, and the replacement. Here’s how you can implement this correctly with an anonymous function using ~:

[[See Video to Reveal this Text or Code Snippet]]

This code does the following:

The across() function targets all columns containing "Wt" in their names.

The anonymous function ~replace(., is.na(.), 0) tells R to replace NA values with 0 in these specified columns.

After running this code, your data frame now looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Using replace_na for Simplicity

If you’re looking for a more straightforward approach, you can utilize the replace_na() function from the tidyr package, which simplifies the syntax even further. Here’s how you can apply it:

[[See Video to Reveal this Text or Code Snippet]]

This variant works similarly, efficiently replacing NA values with 0 in columns containing "Wt."

After applying this method, you'll arrive at the same result, ensuring your data is cleaned and ready for analysis:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Replacing NA values with 0 in specific columns of a data frame can initially seem daunting, but with the right tools provided by R's dplyr and tidyr packages, it becomes a straightforward task. Remember to specify your functions appropriately and consider which method best suits your needs—whether it's using replace() or replace_na(). Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]