Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Effectively Drop Rows Using Multiple String Patterns in Pandas

  • vlogize
  • 2025-03-28
  • 0
How to Effectively Drop Rows Using Multiple String Patterns in Pandas
Pandas dp dropping row with mutiple stringspythonpandas
  • ok logo

Скачать How to Effectively Drop Rows Using Multiple String Patterns in Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Effectively Drop Rows Using Multiple String Patterns in Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Effectively Drop Rows Using Multiple String Patterns in Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Effectively Drop Rows Using Multiple String Patterns in Pandas

Discover how to drop rows in a Pandas DataFrame based on multiple string patterns with ease. Learn to troubleshoot your code for effective data manipulation!
---
This video is based on the question https://stackoverflow.com/q/70983373/ asked by the user 'sysadmincrispy' ( https://stackoverflow.com/u/8724092/ ) and on the answer https://stackoverflow.com/a/70983384/ provided by the user 'jezrael' ( https://stackoverflow.com/u/2901002/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Pandas dp dropping row with mutiple strings

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Effectively Drop Rows Using Multiple String Patterns in Pandas

When working with data in Pandas, a common task is to filter out rows based on specific criteria. One scenario that developers often encounter is the need to drop rows based on multiple string patterns from a DataFrame. In this post, we’ll tackle this issue head-on, providing a clear solution so you can filter your data effectively and without frustration.

The Problem

You may find yourself in a situation where you want to remove rows from a DataFrame based on the presence of certain keywords or phrases. For example, suppose you have a CSV file that contains a column named "Risk," and you want to drop any rows that contain either the string "Not" or "yes."

Here’s a common coding attempt:

[[See Video to Reveal this Text or Code Snippet]]

While it might seem correct at first glance, this approach often doesn’t work due to the way it handles string patterns. Let's simplify the problem with a correct and efficient method.

The Solution

To drop rows with multiple string patterns, you should follow these guidelines:

Correcting the String Pattern

Remove Spaces: Ensure there are no unnecessary spaces in your string pattern. Use the pipe (|) operator correctly to indicate the alternatives.

Instead of "Not | yes", use "Not|yes".

Inverting the Filter: When filtering, you can use the tilde (~) to invert the condition. This negates the boolean outcomes of the filter, helping you retain only those rows that do not match the conditions.

Putting It All Together

Here’s how you can implement these steps in your Pandas DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code:

df["Risk"].str.contains("Not|yes"): This part of the code checks each row in the "Risk" column for the presence of either "Not" or "yes."

~: The tilde operator negates the result, so it filters out any rows that contain the specified patterns.

df[...]: This keeps only the DataFrame rows that do not contain either of the unwanted strings.

Conclusion

Dropping rows based on multiple string patterns in Pandas is straightforward once you understand the correct syntax and logical flow. By ensuring your string patterns are properly formatted and using the inversion operator, you can effectively filter your DataFrame to fit your needs. This not only cleans up your data but also enhances your analysis’s accuracy!

Feel free to share your experiences with filtering rows in Pandas or any questions you may have in the comments below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]