Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding TensorFlow Model Subclassing: How to Properly Show Parameters and Layers

  • vlogize
  • 2025-03-22
  • 1
Understanding TensorFlow Model Subclassing: How to Properly Show Parameters and Layers
  • ok logo

Скачать Understanding TensorFlow Model Subclassing: How to Properly Show Parameters and Layers бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding TensorFlow Model Subclassing: How to Properly Show Parameters and Layers или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding TensorFlow Model Subclassing: How to Properly Show Parameters and Layers бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding TensorFlow Model Subclassing: How to Properly Show Parameters and Layers

This guide explores the intricacies of `TensorFlow's` Model subclassing API, providing a step-by-step guide on how to effectively display model parameters and layers using a VGG block example.
---
This video is based on the question https://stackoverflow.com/q/74596313/ asked by the user 'SIm' ( https://stackoverflow.com/u/20620000/ ) and on the answer https://stackoverflow.com/a/74599698/ provided by the user 'xdurch0' ( https://stackoverflow.com/u/9393102/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: TensorFlow model subclassing API with vars doesn't show parameters or layers

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding TensorFlow Model Subclassing: How to Properly Show Parameters and Layers

When working with deep learning models in TensorFlow, especially when using the subclassing API, you may encounter issues related to displaying the model's parameters and layers. This problem often arises from the way layers are instantiated and stored within the custom model class. In this guide, we will break down the problem and provide a structured solution to ensure your model summaries display correctly all the necessary information.

The Problem

Imagine you are trying to create a custom model using TensorFlow's subclassing API by defining a VGG block. However, upon calling the summary() method on your model, you find that it shows zero parameters and only one layer (the Max Pooling layer) in the output. The other convolutional layers, although they exist in the model, are not properly registered. This confusing behavior is rooted in how you assign these layers in your model's constructor.

Here's a snippet of problematic code for reference:

[[See Video to Reveal this Text or Code Snippet]]

Running this code yields a model summary like this:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

The root of the problem lies in the use of vars() to assign layer attributes. This method bypasses the standard internal housekeeping that Keras performs when managing layers, leading to a failure in registering them for summary output. Thus, we need to adopt a proper way of defining layers within our model to ensure everything works as expected.

Modified Code Example

Instead of using vars(), we can store the convolutional layers in a list or leverage Keras’s Sequential model. Below are proposed solutions for both approaches:

Storing Layers in a List

Rather than using vars() to register the layers, you can store them in a list as follows:

[[See Video to Reveal this Text or Code Snippet]]

With this structure, the summary output will now correctly display the convolutional layers along with their respective parameters:

[[See Video to Reveal this Text or Code Snippet]]

Using Sequential

If you prefer a more streamlined approach without needing to explicitly handle individual layers, you could use tf.keras.Sequential:

[[See Video to Reveal this Text or Code Snippet]]

This approach functions similarly to the previous example but presents a slightly different summary — it shows the sequential model together with the MaxPooling layer.

Conclusion

When creating custom models in TensorFlow using the subclassing API, it's crucial to properly instantiate and register your layers to avoid issues with model summaries. By utilizing lists or Keras's Sequential, you can ensure that your model's parameters and layers are displayed correctly. Take care to follow these conventions, and you’ll find it enhances both your development experience and the robustness of your models.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]