Land use land cover image classification using deep learning | EuroSat | ResNet50 | GeoDev

Описание к видео Land use land cover image classification using deep learning | EuroSat | ResNet50 | GeoDev

The EuroSat official GitHub repo: https://github.com/phelber/EuroSAT
Full code of this tutorial: https://github.com/iamtekson/DL-for-L...

TimeStamp:

0:00 Introduction presentation about Image Classification
6:21 About data (EuroSat data)
10:53 Project setup
16:17 Data Preparation
21:29 ResNet50 Model
32:46 Analyzing the Model
38:15 Conclusion

#resnet #deeplearning #LULC

----------------------------------------------------------------------------------------
Here are some playlists that you might interest with:
----------------------------------------------------------------------------------------
1. Leaflet from basic to advance:    • Leaflet from basic to advance  
2. GeoServer with leaflet web-GIS:    • GeoServer and Leaflet Web-GIS  
3. GeoDjango project:    • Bookmark note on map | GeoDjango tuto...  
4. geoserver-rest:    • geoserver-rest  
5. GIS training in Nepali:    • Beginner GIS training in Nepali | Arc...  
6. LULC map production:    • LandUse Land Cover Map production || ...  
7. Geospatial analysis with python:    • GeoSpatial analysis with python  
8. GeoNode from basic to advance:    • GeoNode from basic to Advance  

--------------------------------------------------------------------------------------------------------------
Check out my courses at the discounted price from the below link:
--------------------------------------------------------------------------------------------------------------
1. "Geospatial data analysis with python": https://www.udemy.com/course/geospati...
2. "Web GIS Development 2021": https://www.udemy.com/course/web-gis-...
3. "Web mapping and Web-GIS from Dev to Deploy 2021: GeoDjango": https://www.udemy.com/course/web-mapp...
4. "Introduction to Web Mapping and Web GIS 2020: GeoDjango": https://www.udemy.com/course/introduc...

---------------------------------------------------------------------------------------------------
Follow me on GitHub: https://github.com/iamtekson
Follow me on Twitter:   / iamtekson  
Follow me on Instagram:   / iamtekson  
-----------------------------------------------------------------------------------------------------

Комментарии

Информация по комментариям в разработке