Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Multiclass classification & Cross Validation - Machine Learning # 4

  • Ахмад Бацци
  • 2020-06-16
  • 42308
Multiclass classification & Cross Validation - Machine Learning # 4
machine learningmulticlass classificationcross validationaidata mininglogistic regressionsupervised learningnaive bayesrandom forestpythonmachine learning tutorialmachine learning courseahmad bazzidr ahmad bazziahmad bazzi machine learningahmad bazzi cross validationahmad bazzi ovoahmad bazzi ovaahmad bazzi random foresthyperparameter tuningtrend microcourseragreat learningudemyautomated tradingdeep reinforcement learningbazzi
  • ok logo

Скачать Multiclass classification & Cross Validation - Machine Learning # 4 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Multiclass classification & Cross Validation - Machine Learning # 4 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Multiclass classification & Cross Validation - Machine Learning # 4 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Multiclass classification & Cross Validation - Machine Learning # 4

☕️ Buy me a coffee: https://paypal.me/donationlink240
🙏🏻 Support me on Patreon:   / ahmadbazzi  

📚About
This lecture shows multiclass classification (OvA vs OvO) and some error analysis approaches (confusion matrix and cross validation) along with many interpretations.

⏲Outline⏲
00:00 Introduction
00:34 What is Multiclass Classification ?
03:40 OvA (One vs All) Strategy
03:56 OvO (One vs One) Strategy
05:18 OvA vs OvO
06:48 SGD OvA Classifier
09:39 The "Lousy" Seven
10:33 OnevsOneClassifier
12:04 Random Forest: OvA Approach
15:22 Better Accuracy by Feature Scaling
16:18 StandardScaling
17:40 Intro to Error Analysis
18:22 Confusion Matrix could be confusing
18:56 Confusion Matrix as an Image
20:03 Explaining the Confusion Matrix
30:45 Outro

🔴 Subscribe for more videos on Machine Learning and Python.
👍 Smash that like button, in case you find this tutorial useful.
👁‍🗨 Speak up and comment, I am all ears.
============================================================
Lecture 1: Introduction    • Introduction - Machine Learning # 1  
Lecture 2: Binary Classification & SGD Classifier    • Stochastic Gradient Descent Classifier - M...  
Lecture 3: Performance Measures    • Performance Measures - Machine Learning # 3  

============================================================

Instructor: Dr. Ahmad Bazzi
IG:   / drahmadbazzi  
Browser: https://www.google.com/chrome/

============================================================
Credits:

Google
https://www.google.com/

Google Photos
https://www.google.com/photos/about/

TensorFlow
https://www.tensorflow.org/

scikit-learn
https://scikit-learn.org/stable/

Numpy
https://numpy.org/

Microsoft OneNote
https://www.onenote.com/signin?wdorig...

Python
https://www.python.org/


============================================================


References:
[1] Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media, 2019.
https://www.amazon.com/Hands-Machine-...

[2] Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006.
https://www.amazon.com/Pattern-Recogn...

[3] Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Vol. 1. No. 10. New York: Springer series in statistics, 2001.
https://www.amazon.com/Elements-Stati...

[4] Burkov, Andriy. The hundred-page machine learning book. Quebec City, Can.: Andriy Burkov, 2019.
https://www.amazon.com/Hundred-Page-M...

[5] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
https://www.amazon.com/Deep-Learning-...

[6] Chollet, Francois. Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek. MITP-Verlags GmbH & Co. KG, 2018.
https://www.amazon.com/Deep-Learning-...

[7] De Prado, Marcos Lopez. Advances in financial machine learning. John Wiley & Sons, 2018.
https://www.amazon.com/Advances-Finan...

[8] Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern classification. John Wiley & Sons, 2012.
https://www.amazon.com/Pattern-Classi...

[9] Lapan, Maxim. Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more. Packt Publishing Ltd, 2018.
https://www.amazon.com/Deep-Reinforce...

[10] Bonaccorso, Giuseppe. Machine Learning Algorithms: Popular algorithms for data science and machine learning. Packt Publishing Ltd, 2018.
https://www.amazon.com/Machine-Learni...

[11] Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning. Cambridge University Press, 2020.
https://mml-book.github.io/book/mml-b...

[12] Krollner, Bjoern, Bruce J. Vanstone, and Gavin R. Finnie. "Financial time series forecasting with machine learning techniques: a survey." ESANN. 2010.

#MachineLearning #TensorFlow #MachineLearningTutorial

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]