Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Manage Nested Loops with purrr for Clinical Trial Data Using R

  • vlogize
  • 2025-10-02
  • 0
Efficiently Manage Nested Loops with purrr for Clinical Trial Data Using R
Nested loop on dates using purrr mapdatenested loopspurrr
  • ok logo

Скачать Efficiently Manage Nested Loops with purrr for Clinical Trial Data Using R бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Manage Nested Loops with purrr for Clinical Trial Data Using R или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Manage Nested Loops with purrr for Clinical Trial Data Using R бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Manage Nested Loops with purrr for Clinical Trial Data Using R

Discover how to utilize `purrr` in R for nested looping on dosing and lab data in clinical trials, effectively replacing the traditional for-loops approach.
---
This video is based on the question https://stackoverflow.com/q/63881326/ asked by the user 'mgrafit' ( https://stackoverflow.com/u/14273468/ ) and on the answer https://stackoverflow.com/a/63917343/ provided by the user 'Edo' ( https://stackoverflow.com/u/9918265/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Nested loop on dates using purrr map

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Manage Nested Loops with purrr for Clinical Trial Data Using R

In data analysis, particularly in clinical trials, you often encounter the challenge of managing complex datasets. This might involve working with various data files that require precise synchronization, such as dose histories and lab parameter assessments. In this guide, we'll address a common problem: how to combine dosing history and lab parameter values cohesively using R's purrr package, a more efficient alternative to traditional looping methods.

The Problem: Merging Dosing and Lab Data

Imagine you have two datasets:

A dosing history file (dosing), detailing when patients received their doses.

A lab parameter values file (labs), which contains lab results taken on different dates that do not necessarily align with the dosing dates.

Your goal is to add a column to the lab values file indicating the most recent dose received by each patient on the date of their lab assessment. While this can be achieved with nested loops, it can be cumbersome and inefficient, especially with larger datasets.

Using Nested Loops (Traditional Method)

Here’s how this problem commonly looks when approached with traditional for loops:

[[See Video to Reveal this Text or Code Snippet]]

While functional, this method can become inefficient as the size of your datasets grows.

The Solution: A purrr Approach

A more elegant solution involves using the purrr package, which is part of the tidyverse. The purrr package provides a suite of functions that allow for simpler and more powerful functional programming frameworks in R.

Step-by-Step Guide

1. Prepare the Dosing Data

We first need to expand the dosing data to ensure all time points are covered in the final analysis:

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

mutate() adds new columns to the dataset.

complete() generates a complete set of dates for each subject.

fill() propagates the last observation forward to fill in missing dose records.

2. Merge with Lab Values

Next, we can perform a left join to merge the lab results with the full dosing data:

[[See Video to Reveal this Text or Code Snippet]]

This join will incorporate the most recent dosing information into our lab dataset seamlessly.

Example Output

After executing the above code, the resulting dataframe will include the lab results alongside the current dose level for each assessment date:

IDlabreclabvallabdatdosrecdoslevdosdat114.922020-06-1720.12020-06-15122.892020-06-2430.12020-06-221314.012020-07-0840.92020-07-07213.922020-06-0610.22020-06-052217.582020-06-2630.32020-06-24Conclusion

Using the purrr package to handle nested looping tasks can make your code cleaner, more efficient, and easier to maintain. This approach is especially beneficial in clinical trial analysis, where accuracy and data integrity are paramount. By adopting functional programming techniques with purrr, you can significantly streamline your data manipulation processes.

For more insights on R programming and data analysis, stay tuned for our next posts!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]