Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Complex numbers and algebra | Math History | NJ Wildberger

  • Insights into Mathematics
  • 2012-04-29
  • 70570
Complex numbers and algebra | Math History | NJ Wildberger
MathHistory15mathematicshistorycomplexnumbersimaginarycubicquadraticformulaTartagliaCardanodelFerrogeometricrepresentationJohannBernoulliinversetanfunctionlogarithmsWesselArgandvectorsplanaranglesDeMoivreCotesEulerGaussd'AlembertFundamentaltheoremofalgebraproofs
  • ok logo

Скачать Complex numbers and algebra | Math History | NJ Wildberger бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Complex numbers and algebra | Math History | NJ Wildberger или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Complex numbers and algebra | Math History | NJ Wildberger бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Complex numbers and algebra | Math History | NJ Wildberger

Complex numbers of the form a+bi are mostly introduced these days in the context of quadratic equations, but according to Stillwell cubic equations are closer to their historical roots. We show how the cubic equation formula of del Ferro, Tartaglia and Cardano requires some understanding of complex numbers even when only real zeroes appear to be involved.

The use of imaginary numbers in calculus manipulations is illustrated with some computations of Johann Bernoulli relating the inverse tan function to complex logarithms, and the connections bewteen tan (na) to tan(a).

The geometrical planar representation of complex numbers goes back to Cotes, Euler and DeMoivre in some form, and then more explicity at the end of the 18th century to Wessel and Argand, and then Gauss.

The Fundamental theorem of algebra is a key undergraduate result that often proves elusive---it was so also for the pioneers of the subject. Euler, Gauss and d'Alembert all struggled with the result, but made progress. Here we outline the ideas behind the proofs of d'Alembert and Gauss.

*************************
Screenshot PDFs for my videos are available at the website http://wildegg.com. These give you a concise overview of the contents of the lectures for various Playlists: great for review, study and summary.

My research papers can be found at my Research Gate page, at https://www.researchgate.net/profile/...

My blog is at http://njwildberger.com/, where I will discuss lots of foundational issues, along with other things.

Online courses will be developed at openlearning.com. The first one, already underway is Algebraic Calculus One at https://www.openlearning.com/courses/... Please join us for an exciting new approach to one of mathematics' most important subjects!

If you would like to support these new initiatives for mathematics education and research, please consider becoming a Patron of this Channel at   / njwildberger   Your support would be much appreciated.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]