Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Filter DataFrame Rows with Pandas Based on Multiple Column Values

  • vlogize
  • 2025-03-30
  • 2
How to Filter DataFrame Rows with Pandas Based on Multiple Column Values
Look for a value in at least 2 columns in all df rowspythonpandas
  • ok logo

Скачать How to Filter DataFrame Rows with Pandas Based on Multiple Column Values бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Filter DataFrame Rows with Pandas Based on Multiple Column Values или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Filter DataFrame Rows with Pandas Based on Multiple Column Values бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Filter DataFrame Rows with Pandas Based on Multiple Column Values

Learn how to filter a DataFrame in Python using Pandas to find rows that have values of one or above in at least two columns.
---
This video is based on the question https://stackoverflow.com/q/70253865/ asked by the user 'altermann' ( https://stackoverflow.com/u/15552563/ ) and on the answer https://stackoverflow.com/a/70253904/ provided by the user 'sammywemmy' ( https://stackoverflow.com/u/7175713/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Look for a value in at least 2 columns in all df rows

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Filtering DataFrames with Pandas: Finding Rows with Values ≥ 1 in Multiple Columns

Pandas is an incredibly powerful tool for data manipulation and analysis in Python. Whether you're analyzing survey results, financial data, or scientific measurements, you'll often find yourself needing to filter DataFrames to focus on the most relevant data. In this guide, we’ll tackle a common data querying requirement: finding rows within a DataFrame that have values greater than or equal to 1 in at least two columns.

The Problem Statement

Imagine you have a DataFrame that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Our goal is to create a new DataFrame that includes only the rows where the values in at least two columns are 1 or above.

Expected Result

From the provided DataFrame, the expected result after filtering would be:

[[See Video to Reveal this Text or Code Snippet]]

The Solution: Step-by-Step Guide

Let’s break down how to achieve this using Pandas. The complete code to filter the DataFrame will be:

[[See Video to Reveal this Text or Code Snippet]]

Step 1: Create a Boolean DataFrame

First, we need to create a boolean DataFrame where each element is True if its corresponding value is greater than or equal to 1, and False otherwise. This is done using the ge() function:

[[See Video to Reveal this Text or Code Snippet]]

The output will look something like this:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Summing the Boolean Values Across Columns

Next, we need to sum the boolean values for each row. This will give us a count of how many columns have values >= 1. We achieve this by specifying the axis parameter:

[[See Video to Reveal this Text or Code Snippet]]

This will return a Series that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Filtering Rows with Two or More True Values

Since we are interested in rows where the sum is greater than or equal to 2, we apply another condition:

[[See Video to Reveal this Text or Code Snippet]]

This provides us with the following boolean Series:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Indexing the Original DataFrame

Finally, we can filter our original DataFrame using the boolean Series created. By using .loc[], we can retrieve only the rows of interest:

[[See Video to Reveal this Text or Code Snippet]]

And this will give you our desired DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Filtering DataFrames based on multiple column conditions is a frequent task when working with Pandas. By following the steps outlined above, you can easily extract the data that meets your specific criteria. Remember, understanding how to manipulate these structures effectively will greatly enhance your data analysis capabilities. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]