Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding the Approximate Nature of tf.reduce_mean() in TensorFlow

  • vlogize
  • 2025-09-22
  • 1
Understanding the Approximate Nature of tf.reduce_mean() in TensorFlow
reduce_mean() of tensorflow gives an approximate value (not exact value)pythontensorflowfloating pointmean
  • ok logo

Скачать Understanding the Approximate Nature of tf.reduce_mean() in TensorFlow бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding the Approximate Nature of tf.reduce_mean() in TensorFlow или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding the Approximate Nature of tf.reduce_mean() in TensorFlow бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding the Approximate Nature of tf.reduce_mean() in TensorFlow

Explore why TensorFlow's `tf.reduce_mean()` returns approximate values due to floating-point arithmetic. Learn about IEEE standards and how this affects calculations in machine learning.
---
This video is based on the question https://stackoverflow.com/q/62966659/ asked by the user 'Rahul Vishwakarma' ( https://stackoverflow.com/u/13720565/ ) and on the answer https://stackoverflow.com/a/62967435/ provided by the user 'Eric Postpischil' ( https://stackoverflow.com/u/298225/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: reduce_mean() of tensorflow gives an approximate value (not exact value)

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Why Does tf.reduce_mean() Return Approximate Values in TensorFlow?

When working with TensorFlow, many developers encounter unexpected results, especially when performing operations like calculating the mean. In this post, we’ll explore a specific scenario where the TensorFlow function tf.reduce_mean() yields an approximate value instead of an exact one. Understanding this behavior can help you become more adept at handling numerical computations in machine learning.

The Problem

You are implementing a loss function using TensorFlow and encounter an approximation issue when computing the mean of your values. Here is a brief overview of your scenario:

[[See Video to Reveal this Text or Code Snippet]]

When you run this code, you expect the output to be 0.025, but TensorFlow returns 0.024999999. Why does this happen?

The Underlying Cause: Floating-Point Arithmetic

The core of the issue lies in how computers perform arithmetic operations using floating-point values. Floating-point arithmetic is inherently an approximation of real numbers, as outlined in Clause 3.2 of the IEEE 754-2008 Standard for Floating-Point Arithmetic. This means that when using floating-point formats, you must accept that the results are not always exact due to limitations in how numbers are represented in binary.

Key Concepts:

Floating-Point Representation: In the IEEE 754 binary32 format (used for float32), not all decimal values can be represented exactly. For example:

The closest representable value to 0.04 is 0.039999999105930328369140625.

The closest representable value to 0.01 is 0.00999999977648258209228515625.

Averaging with Approximation: When you compute the mean of two floating-point numbers, you’re essentially summing these approximated values and then dividing by two, which can lead to further small errors.

The addition and division result in 0.024999998509883880615234375, which is then rounded for display as 0.024999999.

Accepting Floating-Point Limitations

Given these details, it is crucial to recognize that:

Floating-point results are approximations, and minor discrepancies like these are normal when performing machine learning-related calculations.

If precision is paramount in your application, consider using higher precision data types (like float64) when necessary, but understand that this can come at the cost of performance.

Best Practices:

Understand your Data Types: Be aware of how different TensorFlow data types might affect your computations.

Be Prepared for Approximations: When developing algorithms, always remember that small numerical approximations may occur.

Test and Validate: Incorporate testing strategies into your workflow to validate the outcomes of critical computations.

Conclusion

In summary, the approximate behavior of TensorFlow's tf.reduce_mean() results from the nature of floating-point arithmetic. Rather than expecting precise outcomes, developers should be familiar with how numerical computation works at a foundational level. By recognizing these constraints, you can better navigate the intricacies of loss functions and model training in TensorFlow.

From here on, embrace the approximations while ensuring that your models remain robust and effective!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]