𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞 𝐨𝐟 𝐜𝐨𝐭(𝐱) = - 𝐜𝐨𝐬𝐞𝐜^𝟐 (𝐱) | 𝐏𝐫𝐨𝐨𝐟 | 𝐅𝐢𝐫𝐬𝐭 𝐏𝐫𝐢𝐧𝐜𝐢𝐩𝐥𝐞 | 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬

Описание к видео 𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞 𝐨𝐟 𝐜𝐨𝐭(𝐱) = - 𝐜𝐨𝐬𝐞𝐜^𝟐 (𝐱) | 𝐏𝐫𝐨𝐨𝐟 | 𝐅𝐢𝐫𝐬𝐭 𝐏𝐫𝐢𝐧𝐜𝐢𝐩𝐥𝐞 | 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬

In this video, I proof the result: derivative of cot(x) is - cosec^2(x) from the first principle. Although this result is fundamental, only few knows why this is true.

#bhutan #dailyconcepts #mathematics #reddit #calculus
-----------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------
Links(my other videos and blog):

Google Scholar: https://scholar.google.com/citations?...

Researchgate: https://www.researchgate.net/profile/...

Visit my Blog: https://physicswithsingye.blogspot.com/

LinkedIn:   / singye608  
-----------------------------------------------------------------------------------------------------------------------
Previous Videos:
Standard Model of particles:    • 𝐓𝐡𝐞 𝐒𝐭𝐚𝐧𝐝𝐚𝐫𝐝 𝐌𝐨𝐝𝐞𝐥 𝐨𝐟 𝐏𝐚𝐫𝐭𝐢𝐜𝐥𝐞𝐬 | 𝐍𝐨 ...  

CMB:    • 𝐂𝐎𝐒𝐌𝐈𝐂 𝐌𝐈𝐂𝐑𝐎𝐖𝐀𝐕𝐄 𝐁𝐀𝐂𝐊𝐆𝐑𝐎𝐔𝐍𝐃 | 𝐂𝐨𝐬𝐦𝐢𝐜 ...  

Facts about Universe:    • 𝐅𝐚𝐜𝐭𝐬 𝐚𝐛𝐨𝐮𝐭 𝐔𝐧𝐢𝐯𝐞𝐫𝐬𝐞 | 𝐍𝐨 𝐌𝐚𝐭𝐡 | 𝐅𝐮𝐧𝐝...  

Bjuchu Thangka Dema:    • [𝐒𝐩𝐞𝐜𝐢𝐚𝐥 𝐔𝐩𝐥𝐨𝐚𝐝] 𝐁𝐣𝐮𝐜𝐡𝐮 𝐓𝐡𝐚𝐧𝐠𝐤𝐚 𝐃𝐞𝐦𝐚 ...  
-----------------------------------------------------------------------------------------------------------------------
My resources:

1. Video editing software I use: Davinci Resolve 18, VN Editor
(check out Google AppStore and apple store)

2. Animation software I use: krita
https://krita.org/en/download/krita-d...

3. Photos and music: Royalty free photos and music (check websites)
Free footage: https://www.pexels.com/

4. Writing and editing tech I use: iPad Air(4th gen), Macbook Air M2

5. Camera I use: oppo f15, ipad air4
Instagram: singye__608


-----------------------------------------------------------------------------------------------------
0:00 Intro to first principle
1:00 Start of the proof
1:31 Expansion using double angle formula for sin(x) and cos(x)
5:27 Recalling important limit result and evaluating
6:01 Result
6:33 Outro
----------------------------------------------------------------------------------------------------------

Комментарии

Информация по комментариям в разработке