Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть ehAye Everything - Claude Coding - Persian diacritization, fact finding, coding, testing

  • ehAye™ Engine
  • 2025-08-01
  • 21
ehAye Everything - Claude Coding - Persian diacritization, fact finding, coding, testing
Claude CodeNeekware IncVal NeekmanIPA for PersianONNX ModelLinguistic InnovationsONNX Runtime
  • ok logo

Скачать ehAye Everything - Claude Coding - Persian diacritization, fact finding, coding, testing бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно ehAye Everything - Claude Coding - Persian diacritization, fact finding, coding, testing или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку ehAye Everything - Claude Coding - Persian diacritization, fact finding, coding, testing бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео ehAye Everything - Claude Coding - Persian diacritization, fact finding, coding, testing

🎯 Building a Diacritization AI Model in Under 1 Hour | ONNX + BiLSTM Neural Network Tutorial

📝 Video Description:

Watch me create a diacritization model from scratch, export it to ONNX format, and achieve 90%+ text-to-speech accuracy! This tutorial combines deep linguistic knowledge of Persian phonology with modern AI techniques.

🔥 What You'll Learn:
Persian linguistic structure: Why دوست can be "dust" or "doost"
How to encode Persian orthography into neural networks
Building a BiLSTM model specifically for Persian diacritics
ONNX export pipeline for cross-platform deployment
Integrating linguistic rules with machine learning

⚡ Key Technical Highlights:
ONNX Model Specs: 792KB, 202K parameters, INT64 input tensors
Persian Character Set: 32 letters + special handling for ی، و، ا
Diacritic System: َ (fat·ha), ِ (kas·ra), ُ (dam·ma), ْ (su·kun), ّ (tash·did)
Input Shape: [batch_size, sequence_length] → [batch_size, sequence_length, 6]
Inference Speed: Less than 5ms on CPU (real-time capable)

🗣️ Persian Linguistic Deep Dive:
Handling homographs: کشتی (kash·ti: ship vs. kosh·ti: wrestling)
Silent letters: خواهش (khā·hesh not kha·vā·hesh)
Ezafe construction: کتابِ من (ketāb-e man)
Arabic loanwords vs. pure Persian words
Compound verb diacritization

📊 ONNX Architecture Breakdown:
Input (Persian text) → Embedding (64d) → BiLSTM (256d) → Classifier (6 classes) → ONNX Export

🛠️ Complete Tech Stack:
PyTorch → ONNX conversion pipeline
ONNX Runtime for inference
Character-level tokenization for Persian
Custom Persian text preprocessing
Integration with eSpeak-ng Persian voice

📚 Perfect for:
Computational linguistics researchers
Persian/Farsi NLP developers
ONNX deployment engineers
Text-to-Speech system builders
Anyone working with Perso-Arabic scripts

🎬 Detailed Timestamps:
0:00 Why Persian TTS is challenging
2:30 Persian writing system & missing vowels
5:00 Linguistic analysis of Persian diacritics
8:00 Designing the neural architecture
12:00 Creating linguistically-informed training data
18:00 Training with Persian phonological rules
25:00 ONNX export & optimization
30:00 Runtime inference with ONNX
35:00 Persian TTS demo - 70% → 90% accuracy
40:00 Cross-platform deployment tips

🔬 Linguistic Innovations:
Minimal training data through linguistic knowledge
Rule-based data augmentation for Persian
Phonological constraints in the model
Handling Persian-specific challenges

💡 Key Insight: By understanding Persian linguistics deeply, we can build better models with 100x less data than generic approaches!

🌍 Applicable to: Arabic (tashkeel), Hebrew (niqqud), Urdu, Pashto, and other abjad writing systems!

#ONNX #PersianNLP #Farsi #TextToSpeech #BiLSTM #ComputationalLinguistics #فارسی #DeepLearning #NeuralNetworks #PersianAI #LanguageTechnology #NLProc #MachineLearning #AITutorial #LowResourceNLP

---
🎓 Academic Note: This approach was inspired by morphological analysis in Persian computational linguistics and modern sequence labeling techniques.

🔗 Resources:

ONNX Resources:
ONNX Model Zoo: https://github.com/onnx/models
ONNX Runtime: https://onnxruntime.ai/
ONNX Tutorials: https://github.com/onnx/tutorials

Persian Linguistics:
Persian Language Wikipedia: https://en.wikipedia.org/wiki/Persian...
Persian Phonology: https://en.wikipedia.org/wiki/Persian...
IPA for Persian: https://en.wikipedia.org/wiki/Help:IP...
Omniglot Persian: https://www.omniglot.com/writing/pers...

Technical Resources:
PyTorch BiLSTM: https://pytorch.org/docs/stable/gener...
PyTorch to ONNX: https://pytorch.org/tutorials/advance...
eSpeak-ng: https://github.com/espeak-ng/espeak-ng
Character Embeddings: https://pytorch.org/docs/stable/gener...

Persian NLP:
Hazm (Persian NLP Toolkit): https://github.com/sobhe/hazm
ParsiPardaz: http://www.parsipardaz.com/
Persian NER: https://github.com/HaniehP/PersianNER
Farsi Fonts: https://github.com/rastikerdar/vazir-...

Diacritization Papers:
Arabic Diacritization Survey: https://arxiv.org/abs/2008.12481
Neural Arabic Diacritization: https://arxiv.org/abs/1906.01912

Code Repository:
GitHub: https://github.com/[your-username]/persian-diacritization-onnx

Additional Useful Links:
Unicode Persian Block: https://www.unicode.org/charts/PDF/U0...
Persian Keyboard Layout: https://persian.typeit.org/
ONNX Operator Schemas: https://github.com/onnx/onnx/blob/mai...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]