Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Fixing the Keras Input Shape Mismatch Error in Multi-Feature CNN Classification Models

  • vlogize
  • 2025-09-19
  • 0
Fixing the Keras Input Shape Mismatch Error in Multi-Feature CNN Classification Models
Keras input shape mismatch error for multi-feature CNN classification modelnumpytensorflowkerasdeep learningneural network
  • ok logo

Скачать Fixing the Keras Input Shape Mismatch Error in Multi-Feature CNN Classification Models бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Fixing the Keras Input Shape Mismatch Error in Multi-Feature CNN Classification Models или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Fixing the Keras Input Shape Mismatch Error in Multi-Feature CNN Classification Models бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Fixing the Keras Input Shape Mismatch Error in Multi-Feature CNN Classification Models

Learn how to resolve the `input shape mismatch error` in Keras for multi-feature CNN models. Get step-by-step guidance to reshape your data correctly for better model performance.
---
This video is based on the question https://stackoverflow.com/q/62490373/ asked by the user 'Subhrangshu Adhikary' ( https://stackoverflow.com/u/11780625/ ) and on the answer https://stackoverflow.com/a/62502354/ provided by the user 'Tarun Kumar' ( https://stackoverflow.com/u/8350949/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Keras input shape mismatch error for multi-feature CNN classification model

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Keras Input Shape Mismatch Error

As a machine learning practitioner, encountering input shape mismatch errors can be frustrating and time-consuming. The error typically arises when the input data dimensions are not compatible with your model's expectation. In this guide, we'll discuss a common scenario in which a Keras model throws an input shape mismatch error, focusing on a multi-feature CNN classification model.

The Problem

You've created a convolutional neural network (CNN) using Keras, and when you try to train the model, you receive the following error message:

[[See Video to Reveal this Text or Code Snippet]]

This error indicates that your model expects input data in three dimensions, but it is only receiving data in two dimensions. Let's uncover the reason behind this error and, more importantly, how you can resolve it.

Addressing the Input Shape Mismatch

Understanding Input Dimensions

Before diving into the solution, it’s important to understand the expected shape of input data for a CNN. In Keras, when dealing with 1D convolutional layers, the input shape should be structured as follows:

Batch Size: The number of samples in each batch. This dimension is often set to None since batches can vary in size during training.

Sequence Length: The number of time steps (features) in each input sequence.

Number of Features: This represents the number of feature channels. For a basic example, if you're working with a univariate time series, this number would be 1 (indicating a single feature).

In your case, the CNN was expecting an input shape of (None, 14, 1), which translates to batches of sequences with 14 time steps and 1 feature. However, your input data X_train.values has the shape (13166, 14), which tells us that you have 13166 samples, each with 14 features, but it's missing the third dimension for the feature channel.

Reshaping Your Data

To fix this issue, you need to reshape your input data. You can do this easily in NumPy as follows:

[[See Video to Reveal this Text or Code Snippet]]

Here’s a breakdown of what this code does:

X_train.values.reshape(...): This reshapes your data array.

[-1, 14, 1]: The -1 allows NumPy to automatically calculate the required dimension size, while 14 is the sequence length and 1 accounts for the number of features.

Updating the Model Training Code

With your input data correctly reshaped, you can now proceed to fit the model without encountering shape mismatch errors. Here’s how your model training line should look:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Addressing input shape mismatch errors can be a straightforward process once you understand the expected input shape for your CNN model in Keras. By reshaping your input data appropriately, you can ensure that your model accepts the data as intended, leading to successful training and validation.

By applying the steps outlined in this post, you should now be equipped to fix input shape errors in your multi-feature CNN classification models, enabling a smoother and more efficient model development process.

If you have any further questions or topics you would like to explore, feel free to leave a comment below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]