Unsupervised Anomaly Detection with Isolation Forest - Elena Sharova

Описание к видео Unsupervised Anomaly Detection with Isolation Forest - Elena Sharova

PyData London 2018

This talk will focus on the importance of correctly defining an anomaly when conducting anomaly detection using unsupervised machine learning. It will include a review of Isolation Forest algorithm (Liu et al. 2008), and a demonstration of how this algorithm can be applied to transaction monitoring, specifically to detect money laundering.

Slides: https://www.slideshare.net/PyData/uns...
---
www.pydata.org

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Комментарии

Информация по комментариям в разработке