Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть XGBoost Explained | Extreme Gradient Boosting in Python Libraries

  • CodeVisium
  • 2025-10-04
  • 308
XGBoost Explained | Extreme Gradient Boosting in Python Libraries
xgboostmachine learninggradient boostingboosting algorithmpython librariesdata sciencexgboost tutorialkaggleml modelmodel evaluationfeature importancepython for data sciencecodevisium
  • ok logo

Скачать XGBoost Explained | Extreme Gradient Boosting in Python Libraries бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно XGBoost Explained | Extreme Gradient Boosting in Python Libraries или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку XGBoost Explained | Extreme Gradient Boosting in Python Libraries бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео XGBoost Explained | Extreme Gradient Boosting in Python Libraries

XGBoost (Extreme Gradient Boosting) is one of the most powerful and widely used machine learning libraries in Python. It is known for its speed, accuracy, and efficiency in both classification and regression tasks. XGBoost has become a go-to choice in Kaggle competitions, data science projects, and production ML pipelines.

In this video from CodeVisium’s Python Libraries Deep Dive playlist, we’ll explore how XGBoost works, how to implement it, and why it’s so effective in practice.

1. Introduction to XGBoost

XGBoost is an optimized implementation of gradient boosting. It uses decision trees as base learners and improves performance through parallelization, regularization, and efficient memory usage.

👉 It is particularly good for tabular data, imbalanced datasets, and structured machine learning problems, making it a top choice for analysts and ML engineers.

2. How Gradient Boosting Works

Gradient Boosting builds models in sequence — each new model tries to correct the errors made by the previous ones. XGBoost enhances this idea with regularization and system optimization.

Example:

Conceptual gradient boosting process:
prediction = previous_model + learning_rate * new_tree_correction


👉 Each iteration adds a new decision tree that focuses on minimizing the residuals (errors) from the previous prediction, leading to strong overall performance.

3. Training a Model with XGBoost

Using the XGBoost library, you can train models in just a few lines of code.

Example:

import xgboost as xgb
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

Load data
data = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2)

Train model
model = xgb.XGBClassifier(n_estimators=100, learning_rate=0.1, max_depth=3)
model.fit(X_train, y_train)


👉 This code loads a dataset, splits it, and trains an XGBoost classifier using 100 boosting rounds. It’s fast, efficient, and can be fine-tuned easily.

4. Evaluating Model Performance

XGBoost integrates seamlessly with Scikit-learn metrics for evaluation.

Example:

y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)


👉 You can also use metrics like ROC-AUC, F1-score, or log-loss depending on your task. XGBoost models typically outperform simpler algorithms like logistic regression or random forests.

5. Feature Importance Visualization

One of XGBoost’s strengths is its ability to provide feature importance, helping analysts interpret model decisions.

Example:

xgb.plot_importance(model)


👉 This visualizes which features contribute most to the model’s performance — extremely useful for explainable AI and data-driven decision-making.

Interview Questions and Answers:

Q1. What is XGBoost used for?
👉 XGBoost is used for efficient, high-performance gradient boosting on structured datasets for both classification and regression tasks.

Q2. How is XGBoost different from Random Forest?
👉 Random Forest builds independent trees in parallel, while XGBoost builds trees sequentially — each tree corrects the errors of the previous ones.

Q3. What is the learning rate in XGBoost?
👉 It controls how much each new tree contributes to the model — smaller values make learning slower but more accurate.

Q4. What are hyperparameters in XGBoost?
👉 Common hyperparameters include max_depth, learning_rate, n_estimators, subsample, and colsample_bytree.

Q5. Why is XGBoost popular in Kaggle competitions?
👉 It provides state-of-the-art accuracy, handles missing data, supports regularization, and is optimized for performance and scalability.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]