Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Get Rows from a CSV Using Pandas to Match Values from an Array

  • vlogize
  • 2025-10-10
  • 0
Get Rows from a CSV Using Pandas to Match Values from an Array
Get all the rows that have at least one element from array in using Pandas and Pythonpythonpandascsvubuntusearch
  • ok logo

Скачать Get Rows from a CSV Using Pandas to Match Values from an Array бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Get Rows from a CSV Using Pandas to Match Values from an Array или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Get Rows from a CSV Using Pandas to Match Values from an Array бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Get Rows from a CSV Using Pandas to Match Values from an Array

Learn how to extract rows from a CSV file with `Pandas` in Python by matching values from an array. Discover a simple yet effective solution by following our easy guide.
---
This video is based on the question https://stackoverflow.com/q/68376595/ asked by the user 'JAN' ( https://stackoverflow.com/u/779111/ ) and on the answer https://stackoverflow.com/a/68376934/ provided by the user 'sash_wash' ( https://stackoverflow.com/u/12113023/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Get all the rows that have at least one element from array in using Pandas and Python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Extracting Rows from CSV in Python with Pandas

When working with data in Python, you may find yourself needing to filter rows from a CSV file based on certain conditions. A common scenario is when you want to check if any value from a list (or array) is present in the rows of a CSV file. In this guide, we will explore how you can efficiently achieve this using the Pandas library in Python.

The Problem

Suppose you have a CSV file and you want to extract all the rows that contain at least one entry from a predefined list of values. For instance, you might have an array bigArrayOfValues with values like ['XXX', 'YYY', 'ZZZ'], and you would like to find and save all rows from your CSV file that have any of these values.

Initially, you might consider using native Python features, as shown in the given code snippet; however, that approach can often lead to difficulties and inefficiencies. Instead, we will utilize Pandas, which is designed specifically for handling and analyzing data in a more user-friendly, efficient manner.

The Solution Using Pandas

To accomplish the task of filtering rows based on the presence of values from an array, follow the steps below.

Step 1: Import Pandas

First, you need to import the Pandas library, which is indispensable for data manipulation in Python.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Define Your Array

Next, define your array of values that you want to search for within the CSV.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Read the CSV File

Now, use Pandas to read the CSV file into a DataFrame. This allows for simpler data manipulation.

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Create a Function to Check Rows

We will create a helper function that checks each row for any matches with the bigArrayOfValues. The function will return True if there’s a match, and False otherwise.

[[See Video to Reveal this Text or Code Snippet]]

Step 5: Apply the Function to the DataFrame

Use the .apply() method to apply this function across each row in the DataFrame. This step generates a mask (a series of boolean values) that indicates the presence of matches.

[[See Video to Reveal this Text or Code Snippet]]

Step 6: Filter the DataFrame

Now that we have our mask, we can filter our original DataFrame to keep only the rows that contain matches from our initial array.

[[See Video to Reveal this Text or Code Snippet]]

Step 7: Save the Results to a New CSV

Finally, we can write this filtered DataFrame to a new CSV file for further analysis or record-keeping.

[[See Video to Reveal this Text or Code Snippet]]

Final Thoughts

Using Pandas not only streamlines the process of manipulating CSV files in Python but also enhances code readability and efficiency. With the steps outlined above, extracting rows based on an array of values becomes a straightforward and clean task.

Don't hesitate to experiment with larger datasets or more complex conditions to fully leverage the power of the Pandas library for your data processing needs.

Feel free to reach out if you have any questions or need further assistance with Pandas and CSV file manipulation!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]