Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Graph Neural Networks: Revolutionizing Data Analysis Across Disciplines

  • Gary Welz
  • 2025-12-11
  • 1
Graph Neural Networks: Revolutionizing Data Analysis Across Disciplines
  • ok logo

Скачать Graph Neural Networks: Revolutionizing Data Analysis Across Disciplines бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Graph Neural Networks: Revolutionizing Data Analysis Across Disciplines или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Graph Neural Networks: Revolutionizing Data Analysis Across Disciplines бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Graph Neural Networks: Revolutionizing Data Analysis Across Disciplines

In this episode, we explore the revolutionary potential of Graph Neural Networks (GNNs) and their diverse applications. GNNs represent a paradigm shift in data analysis by enabling us to model and understand complex relationships within interconnected data.


We delve into how GNNs are transforming fields like social network analysis, drug discovery, and knowledge graph reasoning. The ability to analyze data points within a network of dependencies unlocks unprecedented insights and predictive capabilities.


Key concepts explored:
Modeling complex relationships in data
Predicting outcomes in interconnected systems
Improving data analysis across disciplines
Hierarchical learning within graphs


Research insights discussed include Xinyu Fu and Irwin King's work on Metapath Context Convolution-based Heterogeneous Graph Neural Networks (2022), which enables more effective representation learning on structural data with multiple node and edge types. We also touch upon Hongbo Bo and colleagues' research on Social Influence Prediction with Train and Test Time Augmentation for Graph Neural Networks (2021), demonstrating how GNNs can accurately predict social influence by considering network structure. Jader Abreu and team's (2019) work on Hierarchical Attentional Hybrid Neural Networks for Document Classification is also discussed.


From predicting social influence and accelerating drug discovery to enhancing knowledge graph reasoning, GNNs offer practical solutions to complex problems. They are also being used to improve document classification by understanding hierarchical relationships between words, sentences, and paragraphs.


Future directions include integrating GNNs with other machine learning techniques, developing explainable GNNs, and creating robust models that can handle noisy or incomplete data. The emerging connection between transformers and GNNs suggests even greater potential for innovation.


References
Sergey Oladyshkin, Timothy Praditia, Ilja Krökeret al. (2023). The Deep Arbitrary Polynomial Chaos Neural Network or how Deep Artificial Neural Networks could benefit from Data-Driven Homogeneous Chaos Theory. Available: http://arxiv.org/abs/2306.14753v1 DOI: 10.xxxx/xxxx
Xinyu Fu, Irwin King (2022). MECCH: Metapath Context Convolution-based Heterogeneous Graph Neural Networks. Available: http://arxiv.org/abs/2211.12792v2 DOI: 10.xxxx/xxxx
Jader Abreu, Luis Fred, David Macêdoet al. (2019). Hierarchical Attentional Hybrid Neural Networks for Document Classification. Available: http://arxiv.org/abs/1901.06610v2 DOI: 10.xxxx/xxxx
Hongbo Bo, Ryan McConville, Jun Honget al. (2021). Social Influence Prediction with Train and Test Time Augmentation for Graph Neural Networks. Available: http://arxiv.org/abs/2104.11641v1 DOI: 10.xxxx/xxxx
Danny D'Agostino, Ilija Ilievski, Christine Annette Shoemaker (2023). Learning Active Subspaces and Discovering Important Features with Gaussian Radial Basis Functions Neural Networks. Available: http://arxiv.org/abs/2307.05639v2 DOI: 10.xxxx/xxxx
Andrea Cossu, Antonio Carta, Vincenzo Lomonacoet al. (2021). Continual Learning for Recurrent Neural Networks: an Empiri...



View full transcript (https://storage.googleapis.com/regal-...)



Creator: GW

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]