Hardy-Weinberg Equation | Detailed

Описание к видео Hardy-Weinberg Equation | Detailed

The Hardy–Weinberg principle, also known as the Hardy–Weinberg equilibrium, model, theorem, or law, states that allele and genotype frequencies in a population will remain constant from generation to generation in the absence of other evolutionary influences. These influences include mate choice, mutation, selection, genetic drift, gene flow and meiotic drive.
Consider a population of monoecious diploids, where each organism produces male and female gametes at equal frequency, and has two alleles at each gene locus. Organisms reproduce by random union of gametes (the “gene pool” population model). A locus in this population has two alleles, A and a, that occur with initial frequencies f0(A) = p and f0(a) = q, respectively.[1] The allele frequencies at each generation are obtained by pooling together the alleles from each genotype of the same generation according to the expected contribution from the homozygote and heterozygote genotypes.
The Hardy Weinberg equilibrium comes to be p+q=1

Source:https://en.wikipedia.org/wiki/Hardy%E...

Комментарии

Информация по комментариям в разработке