Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Toward Sound Recognizer Personalization with d/Deaf and Hard of Hearing Users - UBICOMP/ISWC 2021

  • Steven Goodman
  • 2025-04-17
  • 5
Toward Sound Recognizer Personalization with d/Deaf and Hard of Hearing Users - UBICOMP/ISWC 2021
  • ok logo

Скачать Toward Sound Recognizer Personalization with d/Deaf and Hard of Hearing Users - UBICOMP/ISWC 2021 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Toward Sound Recognizer Personalization with d/Deaf and Hard of Hearing Users - UBICOMP/ISWC 2021 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Toward Sound Recognizer Personalization with d/Deaf and Hard of Hearing Users - UBICOMP/ISWC 2021 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Toward Sound Recognizer Personalization with d/Deaf and Hard of Hearing Users - UBICOMP/ISWC 2021

Presentation for Ubicomp/ISWC, September 2021.

"Toward User-Driven Sound Recognizer Personalization with People Who Are d/Deaf or Hard of Hearing"

By Steven M. Goodman, Ping Liu, Dhruv Jain, Emma J. McDonnell, Jon E. Froehlich, and Leah Findlater.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Volume 5, Issue 2. Article No. 63 (June 2021). DOI: 10.1145/3463501


Abstract:
Automated sound recognition tools can be a useful complement to d/Deaf and hard of hearing (DHH) people’s typical communication and environmental awareness strategies. Pre-trained sound recognition models, however, may not meet the diverse needs of individual DHH users. While approaches from human-centered machine learning can enable non-expert users to build their own automated systems, end-user ML solutions that augment human sensory abilities present a unique challenge for users who have sensory disabilities: how can a DHH user, who has difficulty hearing a sound themselves, effectively record samples to train an ML system to recognize that sound?

To better understand how DHH users can drive personalization of their own assistive sound recognition tools, we conducted a three-part study with 14 DHH participants: (1) an initial interview and demo of a personalizable sound recognizer, (2) a week-long field study of in situ recording, and (3) a follow-up interview and ideation session.

Our results highlight a positive subjective experience when recording and interpreting training data in situ, but we uncover several key pitfalls unique to DHH users—such as inhibited judgement of representative samples due to limited audiological experience. We share implications of these results for the design of recording interfaces and human-the-the-loop systems that can support DHH users to build sound recognizers for their personal needs.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]