Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Question No 01 | Part C | Exercise 4.2 | The Theory of Congruences | Elementary Number Theory

  • Step by Step Maths
  • 2024-08-27
  • 241
Question No 01 | Part C | Exercise 4.2 | The Theory of Congruences | Elementary Number Theory
Number TheoryElementary Number TheoryNumber Theory ElementaryChapter 4Chapter Number 4Chapter No 4The Theory of CongruencesTheory of CongruencesAwais Rasool ShahFast Maths ClubStep by Step Mathsbs mathematicsBS MathsBS programGCUFGovernment College University FaisalabadCari friedrich gaussBasic Properties of CongruenceBinary and Decimal representations of integerTheorem No 4.2Question No 01Exercise 4.2Problems 4.2Part C
  • ok logo

Скачать Question No 01 | Part C | Exercise 4.2 | The Theory of Congruences | Elementary Number Theory бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Question No 01 | Part C | Exercise 4.2 | The Theory of Congruences | Elementary Number Theory или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Question No 01 | Part C | Exercise 4.2 | The Theory of Congruences | Elementary Number Theory бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Question No 01 | Part C | Exercise 4.2 | The Theory of Congruences | Elementary Number Theory

Question No 01 | Part C | Exercise 4.2 | Chapter No 4 | The Theory of Congruences | Elementary Number Theory

Question No 01 | Part B | Exercise 4.2 | The Theory of Congruences Elementary Number Theory

Basic Properties of Congruence | Chapter No 4 | The Theory of Congruences | Elementary Number Theory

Book Name : Elementary Number Theory

By : David M. Burton


Chapter Number : 04
Chapter Name : The Theory of Congruences

Lecture Number : 05
By (Name) : Awais Rasool

Exercise Number : 4.2
Problems Number: 4.2

Question Number : 01
Part Number : C

Example Number : 00
Theorem Number: 4.2
Awais Rasool Shah

Topics Name :
4.1 Carl Friedrich Gauss
4.2 Basic Properties of Congruence.
4.3 Binary and Decimal Representations of integers
4.4 Linear Congruences and the Chinese Remainder Theorem.

..........................................................| |........................................................

📲 Facebook Profile Link:
https://www.facebook.com/awaisrasoolshah786/

📲 Instagram Profile Link:
https://www.instagram.com/awaisrasoolshah

📲 Linkedin Profile Link:
https://www.linkedin.com/in/

📲 WhatsApp contact:
+923160600073
..........................................................| Thanks |........................................................

Basic Properties of Congruence:

Definition:
Let 𝑛 be a fixed positive integer. Two integers 𝑎 and 𝑏 are said to be congruent modulo 𝑛, symbolized by
𝑎≡𝑏 (𝑚𝑜𝑑 𝑛)
If 𝑛 divides the difference 𝑎−𝑏; that is, provided that 𝑎−𝑏=𝑘𝑛 for some integer 𝑘.

Let 𝑛 is greathen 1 be fixed and 𝑎,𝑏,𝑐,𝑑 be arbitrary integers. Then the following properties hold:
𝑎≡𝑎 (𝑚𝑜𝑑 𝑛).
If 𝑎≡𝑏 (𝑚𝑜𝑑 𝑛), then 𝑏≡𝑎 (𝑚𝑜𝑑 𝑛).
If 𝑎≡𝑏 (𝑚𝑜𝑑 𝑛) and 𝑏≡𝑐 (𝑚𝑜𝑑 𝑛) then 𝑎≡𝑐 (𝑚𝑜𝑑 𝑛).
If 𝑎≡𝑏 (𝑚𝑜𝑑 𝑛) and 𝑐≡𝑑 (𝑚𝑜𝑑 𝑛) , then 𝑎+𝑐≡𝑏+𝑑 (𝑚𝑜𝑑 𝑛) and 𝑎𝑐≡𝑏𝑑 (𝑚𝑜𝑑 𝑛)
If 𝑎≡𝑏 (𝑚𝑜𝑑 𝑛) , then 𝑎+𝑐≡𝑏+𝑐 (𝑚𝑜𝑑 𝑛) and 𝑎𝑐≡𝑏𝑐 (𝑚𝑜𝑑 𝑛)
If 𝑎≡𝑏 (𝑚𝑜𝑑 𝑛), then 𝑎^𝑘≡𝑏^𝑘 (𝑚𝑜𝑑 𝑛) for any positive integer 𝑘.

Question No: 01
Prove each of the following assertions:
Part: C
If 𝑎≡b (𝑚𝑜𝑑 𝑛) and the integers “𝑎 , 𝑏 , 𝑛” are all divisible
by "d Greater then 0", then 𝑎/𝑑≡𝑏/𝑑 (𝑚𝑜𝑑 𝑛/𝑑).

Sol: Given that
𝑎≡𝑏 (𝑚𝑜𝑑 𝑛)
𝑎−𝑏≡0 (𝑚𝑜𝑑 𝑛)
We can written as:
𝑛|𝑎−𝑏
𝑎−𝑏=𝑘𝑛  (i) if “k” is a constant.
Divided by “d” on both side and “d” is an constant and "d greater then 0".
𝑎/𝑑−𝑏/𝑑=𝑘𝑛/𝑑
𝑎/𝑑−𝑏/𝑑=𝑘/𝑑 𝑛
we can written either 𝑛/𝑑|𝑎/𝑑−𝑏/𝑑 and 𝑘|𝑎/𝑑−𝑏/𝑑 .
we can written either 𝑛/𝑑|𝑎/𝑑−𝑏/𝑑 and 𝑘|𝑎/𝑑−𝑏/𝑑 . .
if 𝑛/𝑑|𝑎/𝑑−𝑏/𝑑 .
𝑎/𝑑−𝑏/𝑑≡0(𝑚𝑜𝑑 𝑛/𝑑)
Add 𝑏/𝑑 both side.
𝑎/𝑑−𝑏/𝑑+𝑏/𝑑≡0+𝑏/𝑑 (𝑚𝑜𝑑 𝑛/𝑑)
𝑎/𝑑≡𝑏/𝑑 (𝑚𝑜𝑑 𝑛/𝑑)
Hence Prove.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]