Prove f'(x) = nx^(n-1), if f(x) = x^n and n = positive integers

Описание к видео Prove f'(x) = nx^(n-1), if f(x) = x^n and n = positive integers

Prove f'(x) = nx^(n-1), if f(x) = x^n and n = positive integers. To prove this, we will use the formula f'(x) = the limit of {[f(x + delta x)- f(x)]/(delta x)} as delta x approaches to zero. Substituting (x + delta x)^n and x^n respectively to the formula. Applying the binomial theorem to (x + delta x)^n, simplify it.

After the necessary simplification by breaking down each and every terms to individual fraction, apply the limit as delta x approaches to zero. After applying the said limit, the term nx^(n-1) remains. And by that, we've proven f'(x) = nx^(n-1).

Mharthy's Channel's Playlists:

Differential Calculus    • Prove f'(x) = nx^(n-1), if f(x) = x^n...  

Complex Numbers    • Prove:⁡⁡  (a⁡+⁡b⁡i)(c⁡+⁡d⁡i)⁡ = ⁡(ac⁡...  

Conversions    • Conversions  

Logarithms, etc.    • Logarithms, etc.  

Analytic Geometry    • Analytic Geometry  

Plane Trigonometry Basics    • Plane Trigonometry Basics  

Fractions    • Fractions  

Systems of first degree/linear equations    • Systems of first degree/linear equations  

Exponents and Radicals    • Exponents and Radicals  

Quadratic Equation and Formula, etc.    • Quadratic Equation and Formula, etc.  

Division of Polynomials, etc.    • Division of Polynomials, etc.  

The Binomial Theorem    • The Binomial Theorem  

Trigonometric Formulas    • Trigonometric Formulas  

The Exact Values of sin & cos Functions of a Right Triangle    • The Exact Values of sin and cos Funct...  

Trigonometric Identities 1    • Trigonometric Identities 1  

Trigonometric Identities 2    • Trigonometric Identities 2  

Trigonometric Identities 3    • Trigonometric Identities 3  

Комментарии

Информация по комментариям в разработке