DNS of turbulent pipe flow at high Reynolds number

Описание к видео DNS of turbulent pipe flow at high Reynolds number

DNS of turbulent pipe flow at high Reynolds number

Alessandro Ceci, Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
Sergio Pirozzoli, Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
Joshua Romero, NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050, USA
Massimiliano Fatica, NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050, USA
Roberto Verzicco, Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Via del Politecnico 1, 00133 Roma, Italy & Physics of Fluid Group, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Paolo Orlandi, Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy

DOI: https://doi.org/10.1103/APS.DFD.2021....

We present flow animations from DNS of turbulent pipe flow, up to friction Reynolds number \(Re_{\tau} = 6000\). At this Reynolds number, scale separation between inner- and outer-layer dynamics is clearly observable, the large turbulence structures scaling with the pipe radius, and the small ones scaling with viscous wall units. As a result, the axial velocity field features both small- and large-scale streaks. Whereas the fine-scale organization changes, and finer details appear at increasing Reynolds, the large-scale organization is roughly the same, featuring energetic 'modes' with small wavenumber in the azimuthal direction.

See other videos from the 2021 Gallery of Fluid Motion: https://gfm.aps.org/

Комментарии

Информация по комментариям в разработке