Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Functionals & Functional Derivatives | Calculus of Variations | Visualizations

  • Machine Learning & Simulation
  • 2021-04-17
  • 23213
Functionals & Functional Derivatives | Calculus of Variations | Visualizations
functional derivativeminimizing a functionalwhat is a functionalgeteaux derivativeminimum energy principlelagrangian mechanicsnewtonian mechanicsvariational inferencehamiltonianhamiltonian mechanicsadvanced calculus
  • ok logo

Скачать Functionals & Functional Derivatives | Calculus of Variations | Visualizations бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Functionals & Functional Derivatives | Calculus of Variations | Visualizations или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Functionals & Functional Derivatives | Calculus of Variations | Visualizations бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Functionals & Functional Derivatives | Calculus of Variations | Visualizations

We can minimize a Functional (Function of a Function) by setting the first Functional Derivative (=Gâteaux Derivative) to zero. Here are the notes: https://raw.githubusercontent.com/Cey...

A Function maps a scalar/vector/matrix to a scalar/vector/matrix. We have seen it multiple times, we know how to take derivatives etc. But now imagine something takes in a function and outputs a scalar/vector/matrix? At first this seems more complicated. Situations like these arise for instance in Lagrangian and Hamiltonian Mechanics or when deriving probability density functions from a maximum entropy principle.

But a more intuitive example: Say you want to take your car from Berlin to Munich. There are quite a lot of possible routes to take, each with a potentially different velocity and height profile. Now imagine you have a function that associates each point in time over the route with a position on the map. You could use this to deduce the height-and velocity profile. A Functional would now be a function that takes in the route and outputs the fuel consumption, i.e. mapping from a function to a scalar.

Then, you might be interested in minimizing your fuel consumption, so you seek the minimum of a Functional. First Derivative equals zero, right? But how do you take the functional derivative.

All of this and more will be answered in the video. ;)

-------

📝 : Check out the GitHub Repository of the channel, where I upload all the handwritten notes and source-code files (contributions are very welcome): https://github.com/Ceyron/machine-lea...

📢 : Follow me on LinkedIn or Twitter for updates on the channel and other cool Machine Learning & Simulation stuff:   / felix-koehler   and   / felix_m_koehler  

💸 : If you want to support my work on the channel, you can become a Patreon here:   / mlsim  

-------

Timestamps:
00:00 Introduction
00:49 Can't we just use Newtonian Mechanics?
01:27 Defining Energies and Parameters
04:21 "Average Difference in Energy"
06:20 A Functional
07:11 Example 1
08:46 Example 2
09:56 Example 3
11:18 Comparing the Examples
12:20 Visualizing the Examples
13:23 Mathematical Definition of a Functional
15:22 Concept of Minimizing a Functional
16:22 Intro to the Functional Derivative
19:43 Example: Minimizing the Functional
22:53 Rearrange for y
25:38 Fundamental Lemma of Calculus of Variations
26:55 Rediscovering Newtonian Mechanics
28:07 Solving the ODE
29:31 Summary: Functional Derivatives
30:35 Outro

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]