Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mastering SWIG Typemaps for Multiple Numpy Arrays of Different Types in C Integration

  • vlogize
  • 2025-07-28
  • 0
Mastering SWIG Typemaps for Multiple Numpy Arrays of Different Types in C Integration
Numpy.i typemap for multiple arrays of different typespythonarraysswigtypemaps
  • ok logo

Скачать Mastering SWIG Typemaps for Multiple Numpy Arrays of Different Types in C Integration бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mastering SWIG Typemaps for Multiple Numpy Arrays of Different Types in C Integration или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mastering SWIG Typemaps for Multiple Numpy Arrays of Different Types in C Integration бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mastering SWIG Typemaps for Multiple Numpy Arrays of Different Types in C Integration

Learn how to seamlessly integrate `C` functions with multiple numpy arrays of different types using `SWIG` typemaps in Python.
---
This video is based on the question https://stackoverflow.com/q/67721464/ asked by the user 'Victorello' ( https://stackoverflow.com/u/16048313/ ) and on the answer https://stackoverflow.com/a/67826662/ provided by the user 'Jens Munk' ( https://stackoverflow.com/u/2386026/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Numpy.i typemap for multiple arrays of different types

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering SWIG Typemaps for Multiple Numpy Arrays of Different Types in C Integration

When working with C and Python, especially when integrating complex functions that require multiple data types, you may face some challenges. One such challenge is calling a C function that requires multiple arrays of different types from Python, using the SWIG interface. This post will provide a comprehensive guide on how to handle such situations effectively.

Understanding the Problem

Assume you have a C function defined as follows:

[[See Video to Reveal this Text or Code Snippet]]

You want to call this function from a Python module using SWIG. While you have successfully mapped similar arrays of the same type in the past, you're now facing the issue of integrating arrays with different data types: int, double, and char. Let's delve into how you can address this situation.

The Solution

To work with multiple data types, you need to create a typemap for each data type in your SWIG interface file. Here's a step-by-step breakdown of how to set this up:

1. Define Your Function in Header File

First, ensure your C function is properly declared in a header file, say test.h:

[[See Video to Reveal this Text or Code Snippet]]

2. Implement the Function in Source File

In your implementation file (for example, test.cpp), define how the function processes the inputs:

[[See Video to Reveal this Text or Code Snippet]]

3. Create the SWIG Interface File

In your test.i file, you will need to import the numpy typemap and apply the necessary configurations for your data types. Below is how your test.i should look:

[[See Video to Reveal this Text or Code Snippet]]

4. Setting Up the Build Configuration

Create a setup.py script to facilitate the building process. The following is a sample code for this script:

[[See Video to Reveal this Text or Code Snippet]]

5. Test Your Integration

In your test.py script, you can now call this function with the appropriate arguments using numpy arrays:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Integrating C functions with multiple arrays of different types in Python using SWIG might seem daunting, but with the right typemaps and setup, it can be achieved seamlessly. This technique enables you to leverage the performance of C in Python efficiently while working with diverse data types.

With practice, you will find that handling these situations becomes second nature. We hope this guide helps you streamline your development process!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]