Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Machine Learning Design Patterns | Michael Munn, Google

  • Data Science Milan
  • 2021-01-26
  • 573
Machine Learning Design Patterns | Michael Munn, Google
  • ok logo

Скачать Machine Learning Design Patterns | Michael Munn, Google бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Machine Learning Design Patterns | Michael Munn, Google или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Machine Learning Design Patterns | Michael Munn, Google бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Machine Learning Design Patterns | Michael Munn, Google

Design patterns capture best practices and solutions to recurring problems. The recently released O’Reilly book “Machine Learning Design Patterns” covers thirty design patterns that frequently crop up through the various stages of the machine learning process. In this talk, we will discuss in detail three of these tried-and-proven methods: Useful Overfitting, Rebalancing, and Explainable Predictions.

Rebalancing: Many real-world datasets are not perfectly balanced, and it’s important to address this throughout the ML process. The Rebalancing pattern provides various approaches for handling datasets that are inherently imbalanced.

Useful Overfitting: In the Useful Overfitting design pattern we forgo the use of generalization mechanisms, such as dropout, early stopping or use of validation set, because we want to intentionally overfit on the training dataset.

Explainable Predictions: The Explainable Predictions design pattern increases user trust in ML systems by providing users with an understanding of how and why models make certain predictions.

Bio:

Michael Munn

Mike is an ML solutions engineer in Google Cloud. He helps customers design, implement, and deploy machine learning models and teaches the ML Immersion Program in Google’s Advanced Solutions Lab

Topics: machine learning engineering, design patterns, MLOps.

Event details:

This event will be held in English and will be streamed live via our Youtube channel (   / datasciencemilan  . The live streaming will be listed before the event starts.

During the event you will be able to interact and ask questions via the #general channel in our slack workspace. You can request an invite via our website, at the get in touch section, or by following this direct link: https://app.slack.com/client/T1K880GR....

Agenda:

18:30 Data Science Milan community opening

18:40 Talk (50 minutes)

---

Would you be happy to host one of our events? Increase your popularity and be known from our community by hosting one of our interesting events. Contact us at [masked].

If you are interested in doing a lightning talk or want to propose an event, hackathon, panel discussion, roundtable, or any sort of initiative please submit your proposal at Call for speakers or get in touch with one of the members of the staff.

---

This event is supported by IAML (Italian Association of Machine Learning).

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]