Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Filtering Rows of a Pandas DataFrame with regex in Python

  • vlogize
  • 2025-05-25
  • 0
Filtering Rows of a Pandas DataFrame with regex in Python
Filtering rows of a pandas dataframe according to regex values of a column in Pythonpythonpandasfilter
  • ok logo

Скачать Filtering Rows of a Pandas DataFrame with regex in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Filtering Rows of a Pandas DataFrame with regex in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Filtering Rows of a Pandas DataFrame with regex in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Filtering Rows of a Pandas DataFrame with regex in Python

Learn how to filter rows of a Pandas DataFrame according to regex values in a column. Simplify your data cleaning process and focus on the essential information you need!
---
This video is based on the question https://stackoverflow.com/q/71121349/ asked by the user 'Aaron' ( https://stackoverflow.com/u/16668387/ ) and on the answer https://stackoverflow.com/a/71121974/ provided by the user 'Pab' ( https://stackoverflow.com/u/7455917/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Filtering rows of a pandas dataframe according to regex values of a column in Python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Filtering Rows of a Pandas DataFrame with regex in Python: A Step-by-Step Guide

When working with data in Python, particularly with datasets structured as Pandas DataFrames, one common task is filtering rows based on specific criteria. In this guide, we will tackle a specific scenario: filtering out rows from a DataFrame that contain addresses from foreign states, particularly when we want to gain insights from locations within the United States.

The Problem

Imagine you have a dataset containing the locations of Walmarts across North America, including their addresses which contain state codes (like "CA" for California or "AB" for Alberta). The goal is to filter out the rows that correspond to non-U.S. state codes. The user in our example devised a function to eliminate these foreign addresses but encountered difficulties, including a KeyError. Let's explore how we can effectively filter this data without running into errors.

A Solution Overview

To efficiently filter the DataFrame based on regex values from a specific column, we can leverage the str.contains() method from the Pandas library. Here’s how to do it step by step:

Step 1: Create the List of Foreign States

Start by defining a list of foreign state codes that you want to filter out. In our case, this list includes Canadian provinces and addresses from Mexico:

[[See Video to Reveal this Text or Code Snippet]]

This code snippet generates a precise format for each state code to maintain clarity in address matching.

Step 2: Filtering with regex

Next, we will filter the DataFrame by using the str.contains() function, which checks which of the addresses contain any of the specified foreign state codes. By employing a regex pattern, we can efficiently filter rows:

[[See Video to Reveal this Text or Code Snippet]]

In this code:

The | operator denotes an "OR" condition in regex, allowing us to match any of the foreign state codes.

The ~ operator negates the boolean mask, meaning we keep only the rows that do not contain any of the specified codes.

Step 3: Results

After applying the above snippet to your DataFrame, you should see that the rows with foreign state codes have been filtered out successfully. This approach keeps your data set clean and focused solely on the locations you are interested in—namely the locations within the United States.

Conclusion

Filtering rows in a Pandas DataFrame based on regex values can greatly enhance your data analysis by streamlining the dataset you are working with. By following the steps outlined above, you can effectively remove rows associated with foreign addresses while avoiding common pitfalls like KeyError.

With this technique, you can easily manage and analyze your data, ensuring that you focus on the essential information crucial to your needs.

If you encounter additional challenges with data filtering, feel free to share in the comments! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]