Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Group By Multiple Columns in Pandas

  • vlogize
  • 2025-10-12
  • 0
How to Group By Multiple Columns in Pandas
Group by apply to multiple columns?pythonpython 3.xpandasdata science
  • ok logo

Скачать How to Group By Multiple Columns in Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Group By Multiple Columns in Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Group By Multiple Columns in Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Group By Multiple Columns in Pandas

Learn how to efficiently use the `groupby` function in pandas to aggregate and analyze data across multiple columns. Improve your data analysis skills with this easy-to-follow guide!
---
This video is based on the question https://stackoverflow.com/q/64020280/ asked by the user 'Chris90' ( https://stackoverflow.com/u/8797830/ ) and on the answer https://stackoverflow.com/a/64020342/ provided by the user 'Quang Hoang' ( https://stackoverflow.com/u/4238408/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Group by apply to multiple columns?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Group By Multiple Columns in Pandas: A Complete Guide

When working with data in Python, especially in the realm of data science, you often need to analyze and aggregate data for insights. One common scenario is grouping by multiple columns in a DataFrame to summarize the information. Today, we'll explore how to effectively use the groupby feature of the pandas library to achieve this.

The Problem

Imagine you have a DataFrame containing data concerning various entities, and each entity has multiple attributes, such as whether they are associated with a Factory, Restaurant, Store, or Building. In this scenario, you want to know how many of these attributes are True for each entity.

Let's take a closer look at our DataFrame, which appears as follows:

[[See Video to Reveal this Text or Code Snippet]]

You may start with code to group by a single column like 'Factory' and sum its values:

[[See Video to Reveal this Text or Code Snippet]]

However, you're looking to extend this to count True values across multiple columns, such as 'Restaurant', 'Store', and 'Building'. This requires a more sophisticated approach.

The Solution

To achieve the desired output, you can follow these steps:

Step 1: Define the Columns

First, identify the columns you want to aggregate. In this example, we'll work with the following columns:

Factory

Restaurant

Store

Building

Define them in a list:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Group By Name and Sum the Values

Next, use the groupby function, and apply the sum function directly on these columns. This approach is more efficient than using apply and avoids potential issues with performance in pandas due to non-vectorized operations.

Here’s how you do it:

[[See Video to Reveal this Text or Code Snippet]]

Expected Output

Once you execute the above code, your output will look something like this:

[[See Video to Reveal this Text or Code Snippet]]

Breakdown of the Output

Brian has 2 instances of True for Factory, 0 for Restaurant, 1 for Store, and 1 for Building.

Mike has 2 for Factory, 1 for Restaurant, 1 for Store, and 1 for Building.

Sam has 1 for Factory, 0 for Restaurant, 1 for Store, and 1 for Building.

The resulting DataFrame summarizes the number of True values across all specified columns for each individual, as desired.

Conclusion

Grouping by multiple columns in pandas is a straightforward process once you understand how to utilize the groupby function effectively. By applying an efficient method and avoiding potential pitfalls from non-vectorized operations, you can enhance your data analysis workflows significantly.

Feel free to incorporate this method into your data analysis toolkit for better insights into your datasets!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]