Is the Future of Linear Algebra.. Random?

Описание к видео Is the Future of Linear Algebra.. Random?

The machine learning consultancy: https://truetheta.io
Join my email list to get educational and useful articles (and nothing else!): https://mailchi.mp/truetheta/true-the...
Want to work together? See here: https://truetheta.io/about/#want-to-w...

"Randomization is arguably the most exciting and innovative idea to have hit linear algebra in a long time." - First line of the Blendenpik paper, H. Avron et al.

Follow up post: https://truetheta.io/concepts/linear-...

SOCIAL MEDIA

LinkedIn :   / dj-rich-90b91753  
Twitter :   / duanejrich  
Github: https://github.com/Duane321

SUPPORT

  / mutualinformation  

SOURCES

Source [1] is the paper that caused me to create this video. [3], [7] and [8] provided a broad and technical view of randomization as a strategy for NLA. [9] and [12] informed me about the history of NLA. [2], [4], [5], [6], [10], [11], [13] and [14] provide concrete algorithms demonstrating the utility of randomization.

[1] Murray et al. Randomized Numerical Linear Algebra. arXiv:2302.11474v2 2023

[2] Melnichenko et al. CholeskyQR with Randomization and Pivoting for Tall Matrices (CQRRPT). arXiv:2311.08316v1 2023

[3] P. Drineas and M. Mahoney. RandNLA: Randomized Numerical Linear Algebra. Communications of the ACM. 2016

[4] N. Halko, P. Martinsson, and J. Tropp. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions. arXiv:0909.4061v2 2010

[5] Tropp et al. Fixed Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data. NeurIPS Proceedings. 2017

[6] X. Meng, M. Saunders, and M. Mahoney. LSRN: A Parallel Iterative Solver for Strongly Over- Or Underdetermined Systems. SIAM 2014

[7] D. Woodruff. Sketching as a Tool for Numerical Linear Algebra. IBM Research Almaden. 2015

[8] M. Mahoney. Randomized Algorithms for Matrices and Data. arXiv:1104.5557v3. 2011

[9] G. Golub and H van der Vorst. Eigenvalue Computation in the 20th Century. Journal of Computational and Applied Mathematics. 2000

[10] J. Duersch and M. Gu. Randomized QR with Column Pivoting. arXiv:1509.06820v2 2017

[11] Erichson et al. Randomized Matrix Decompositions Using R. Journal of Statistical Software. 2019

[12] J. Gentle et al. Software for Numerical Linear Algebra. Springer. 2017

[13] H. Avron, P. Maymounkov, and S. Toledo. Blendenpik: Supercharging LAPACK's Least-Squares Solver. Siam. 2010

[14] M. Mahoney and P. Drineas. CUR Matrix Decompositions for Improved Data Analysis. Proceedings of the National Academy of Sciences. 2009

TIMESTAMPS
0:00 Significance of Numerical Linear Algebra (NLA)
1:35 The Paper
2:20 What is Linear Algebra?
5:57 What is Numerical Linear Algebra?
8:53 Some History
12:22 A Quick Tour of the Current Software Landscape
13:42 NLA Efficiency
16:06 Rand NLA's Efficiency
18:38 What is NLA doing (generally)?
20:11 Rand NLA Performance
26:24 What is NLA doing (a little less generally)?
31:30 A New Software Pillar
32:43 Why is Rand NLA Exceptional?
34:01 Follow Up Post and Thank You's

Комментарии

Информация по комментариям в разработке