Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть TCOptRob Seminar: Composable Optimization for Robotic Motion Planning and Control by Zac Manchester

  • Model-Based Optimization
  • 2022-12-06
  • 1367
TCOptRob Seminar: Composable Optimization for Robotic Motion Planning and Control by Zac Manchester
optimizationalgorithmsroboticsmodelscontroloptimal controlAI
  • ok logo

Скачать TCOptRob Seminar: Composable Optimization for Robotic Motion Planning and Control by Zac Manchester бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно TCOptRob Seminar: Composable Optimization for Robotic Motion Planning and Control by Zac Manchester или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку TCOptRob Seminar: Composable Optimization for Robotic Motion Planning and Control by Zac Manchester бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео TCOptRob Seminar: Composable Optimization for Robotic Motion Planning and Control by Zac Manchester

TCOptRob Seminar: Composable Optimization for Robotic Motion Planning and Control by Zac Manchester of the Robotics Institute, Carnegie Mellon University (https://www.ri.cmu.edu/ri-faculty/zac....

00:00 Intro
1:44 The Talk
47:38 Q&A

Abstract:

Contact interactions are pervasive in key real-world robotic tasks like manipulation and walking. However, the non-smooth dynamics associated with impacts and friction remain challenging to model, and motion planning and control algorithms that can fluently and efficiently reason about contact remain elusive. In this talk, I will share recent work from my research group that takes an “optimization-first” approach to these challenges: collision detection, physics, motion planning, and control are all posed as constrained optimization problems.  We then build a set of algorithmic and numerical tools that allow us to flexibly compose these optimization sub-problems to solve complex robotics problems involving discontinuous, unplanned, and uncertain contact mechanics.

Speaker Biography:

Zac Manchester is an Assistant Professor of Robotics at Carnegie Mellon University. He holds a Ph.D. in aerospace engineering and a B.S. in applied physics from Cornell University. Zac was a postdoc in the Agile Robotics Lab at Harvard University and previously worked at Stanford, NASA Ames Research Center and Analytical Graphics, Inc. He received a NASA Early Career Faculty Award in 2018 and has led three satellite missions. His research interests include motion planning, control, and numerical optimization, particularly with application to robotic locomotion and spacecraft guidance, navigation, and control.

----------------------------------

The IEEE RAS Technical Committee on Model Based Optimization for Robotics is focused on building and supporting a community of researchers and practioners focused on the development and application of model-based optimization techniques for the generation and control of dynamic behaviors in robotics and their practical implementation. You can find our more about the TC at: https://www.ieee-ras.org/model-based-....

Copyright (c) 2022 TCOptRob. All rights reserved.
License: CC BY-NC-SA 4.0

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]