Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Transforming Your Data: Converting Wide Format to Long Format in Python Using Pandas

  • vlogize
  • 2025-09-01
  • 0
Transforming Your Data: Converting Wide Format to Long Format in Python Using Pandas
Convert wide to long data formatpythonpandas
  • ok logo

Скачать Transforming Your Data: Converting Wide Format to Long Format in Python Using Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Transforming Your Data: Converting Wide Format to Long Format in Python Using Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Transforming Your Data: Converting Wide Format to Long Format in Python Using Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Transforming Your Data: Converting Wide Format to Long Format in Python Using Pandas

Discover how to efficiently convert a wide data format to a `long format` using Pandas in Python. Simplify your data representation for better analysis and visualization.
---
This video is based on the question https://stackoverflow.com/q/64483293/ asked by the user 'Umer_Khan' ( https://stackoverflow.com/u/8636749/ ) and on the answer https://stackoverflow.com/a/64483552/ provided by the user 'ansev' ( https://stackoverflow.com/u/11884237/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Convert wide to long data format

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Transforming Your Data: Converting Wide Format to Long Format in Python Using Pandas

Data transformation is a critical aspect of data analysis that allows us to manipulate our datasets for better insights and visualizations. One common transformation is converting data from a wide format to a long format. In this guide, we’ll explore how to achieve this using Python’s Pandas library.

Understanding the Problem

Let’s start by understanding the structure of the data we are working with. Imagine you have a dataset that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

In this wide format, each ID has multiple columns (col1, col2, col3) that may represent different categories or classifications. Our goal is to convert this dataset into the long format as shown below:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

To achieve this transformation seamlessly, we can utilize the melt and pivot_table functions from the Pandas library. Below, we will break down the steps involved in this process.

Step 1: Using Melt to Transform Data

The first step is to melt the DataFrame. This function unpivots the DataFrame from a wide format into a long format. Here’s how to do it:

[[See Video to Reveal this Text or Code Snippet]]

This code snippet accomplishes the following tasks:

melt('ID', ...): Specifies that the ID column should remain fixed.

var_name='value': Renames the unpivoted column to value (the original column names).

value_name='n': Renames the values to n which indicates the occurrence of 1.

By filtering with .loc[...], we only keep those rows where the value is 1.

Step 2: Creating a Pivot Table

Once we have the melted DataFrame, we will pivot the data back into a structured format using:

[[See Video to Reveal this Text or Code Snippet]]

This code performs the following actions:

index='ID': Sets the index for the new DataFrame using the ID.

columns=df2.groupby('ID').cumcount().add(1): Creates new column labels based on the counts of occurrences.

values=['value']: Specifies that we want to fill in the new DataFrame with the values from the melted DataFrame.

Step 3: Finalizing the DataFrame

Finally, we need to reformat the columns and reset the index to present the data neatly:

[[See Video to Reveal this Text or Code Snippet]]

Example Output

For our initial dataset, here’s what the output looks like after performing the above steps:

[[See Video to Reveal this Text or Code Snippet]]

Handling Additional Cases

Let's consider another example with a slightly different dataset:

[[See Video to Reveal this Text or Code Snippet]]

Running the same transformation yields:

[[See Video to Reveal this Text or Code Snippet]]

This flexibility allows us to handle more complex datasets effectively.

Conclusion

Converting data from a wide format to a long format can significantly enhance your ability to analyze and visualize your data. With just a few lines of code in Pandas, you can reshape your dataset for clearer insights. So the next time you encounter a wide-format dataset, remember this handy method to transform it into a more manageable long format.

Whether you're preparing for further analysis or simply cleaning your data, mastering this technique will undoubtedly save you time and effort in your data processing tasks.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]