Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Match Values Based on Multiple Conditions Using DataFrames in R

  • vlogize
  • 2025-07-31
  • 0
Match Values Based on Multiple Conditions Using DataFrames in R
Match values based on multiple conditions from dataframes of different sizes in Rdataframematch
  • ok logo

Скачать Match Values Based on Multiple Conditions Using DataFrames in R бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Match Values Based on Multiple Conditions Using DataFrames in R или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Match Values Based on Multiple Conditions Using DataFrames in R бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Match Values Based on Multiple Conditions Using DataFrames in R

Learn how to effectively `match values` from two dataframes in R based on multiple conditions and create a new column using examples and solutions.
---
This video is based on the question https://stackoverflow.com/q/65703369/ asked by the user 'Anna' ( https://stackoverflow.com/u/11572623/ ) and on the answer https://stackoverflow.com/a/65703740/ provided by the user 'r2evans' ( https://stackoverflow.com/u/3358272/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Match values based on multiple conditions from dataframes of different sizes in R

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Matching Values Based on Multiple Conditions in R

When working with data in R, there are times when you may come across the need to match values between different dataframes based on multiple conditions. This task can be quite common in data analysis, and knowing how to do it efficiently can be a game-changer. In this post, we will explore how to match values from two dataframes with different sizes based on two specific conditions and create a new column as an outcome. Let’s dive into the problem at hand and see how to solve it step-by-step.

The Problem

Suppose you have two dataframes: t1 and t2. Here’s a quick look at what they contain:

Dataframe t1

idcondition1313112525254105105555627381Dataframe t2

indtest_ctime133225554102151034625573228119The goal is to match the entries in t1 with those in t2 based on the conditions:

t1$id == t2$ind

t1$condition == t2$test_c

Additionally, we want to add a new column time in t1 that reflects the corresponding value from t2 for those matched conditions.

Expected Outcome

We would like our resulting dataframe, t3, to look like this:

idconditiontime1332133211NA255525552555410215103455NA55NA625573228119The Solution

To match values as described in the problem, we can use either the merge function from base R or the left_join function from the dplyr package. Let's explore both methods in detail.

Using Base R

You can use the merge function to join the dataframes on the specified columns. Here’s how to do it:

[[See Video to Reveal this Text or Code Snippet]]

This code will produce a new dataframe out, which includes the original columns of t1 and an additional time column based on our matching conditions. The all.x = TRUE argument ensures that all rows from t1 are preserved, with NA values filled in where no match is found.

Using dplyr

Alternatively, if you prefer a more readable syntax, you can use the dplyr package, which provides a convenient left_join function:

[[See Video to Reveal this Text or Code Snippet]]

Comparing Results with t3

After applying both methods, you may notice that the resulting dataframes contain some differences compared to your expected t3. Specifically, the merge output displays values of time based on grouped entries, whereas t3 seems to only fill a single occurrence for some conditions.

For example, when examining entries with id=2 and condition=5, merge provides the same time value of 55 for all occurrences, while t3 fills only the first one. It’s essential to clarify whether that discrepancy arises from how t3 was generated or if there are any additional processing steps applied post-merge.

Conclusion

Matching values from different dataframes based on multiple conditions in R can be efficiently done using the merge() function or left_join() from the dplyr package. This post has demonstrated how to perform this task and highlighted the differences that can arise based on the approach used. Be sure to choose the method that best fits your data analysis needs, and always double-check your final outputs for accuracy. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]