Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Get 80 Bit Floats to Work in Numpy

  • vlogize
  • 2025-10-04
  • 0
How to Get 80 Bit Floats to Work in Numpy
how can i get 80 bit floats to work in numpypythonnumpyfloating pointprecisionfloating accuracy
  • ok logo

Скачать How to Get 80 Bit Floats to Work in Numpy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Get 80 Bit Floats to Work in Numpy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Get 80 Bit Floats to Work in Numpy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Get 80 Bit Floats to Work in Numpy

Learn how to preserve precision when working with floating-point numbers in Numpy by leveraging 80-bit floats. This guide provides detailed steps and explanations for users of Python and Numpy.
---
This video is based on the question https://stackoverflow.com/q/63660188/ asked by the user 'Jim' ( https://stackoverflow.com/u/12797604/ ) and on the answer https://stackoverflow.com/a/63660542/ provided by the user 'Warren Weckesser' ( https://stackoverflow.com/u/1217358/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: how can i get 80 bit floats to work in numpy

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Get 80 Bit Floats to Work in Numpy: A Comprehensive Guide

When working with high precision in numerical computations, you might run into limitations with standard floating-point types. This is particularly evident when using Numpy in Python and trying to utilize 80-bit long double data types supported by Intel x86 FPUs. Many users have faced challenges in preserving the accuracy of their floating-point numbers when switching between data types. If you’re one of them, this guide will help you understand the issue and find a reliable solution.

Understanding the Problem

Numpy provides several floating-point representations, including float64, float128, and longfloat. However, despite using these data types, users often still notice that the additional digits are not preserved, resulting in inaccurate representations of numbers. Below is a typical illustration of this issue:

[[See Video to Reveal this Text or Code Snippet]]

In the example above, the intended number (1.4756563577476488347) is rounded off, and the precision is lost.

Why Does This Happen?

The root of the problem lies in how Python handles floating-point numbers. Python itself uses a 64-bit floating point format, and when you pass a floating-point number as a Python object into the Numpy array, it can lead to truncation of precision. So, what can you do about it?

The Solution: Use Strings for High Precision

To circumvent this precision loss, you can use strings for your floating-point literals instead of passing them directly. By doing so, you allow Numpy to handle the number correctly, thus preserving its full precision. Here’s how:

Step-by-Step Guide

Define the Float as a String: Instead of directly using a floating-point number, represent it as a string.

[[See Video to Reveal this Text or Code Snippet]]

Set Print Options for High Precision: Use Numpy’s print options to ensure that all precision is displayed.

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Steps

Using Strings: When you use a string, Numpy can accurately parse it into its floating-point representation. This effectively allows the floating-point arithmetic to occur with all the precision intended without truncation.

Using float128: By explicitly defining the data type as float128, you maximize the precision available to you.

Conclusion

In situations where you need to work with high precision floating-point numbers in Python using Numpy, it’s essential to understand how data types interact with Python’s native handling of floats. By converting your float literals into strings, you can effectively utilize the power of 80-bit long doubles and maintain accuracy in your calculations.

Now that you’re armed with this knowledge, go ahead and implement these techniques in your own work. Precision is crucial, especially in fields like data science, numerical simulations, and machine learning, where the accuracy of data manipulation can significantly impact outcomes.

Feel free to reach out and share your experiences or any challenges you encounter as you apply these methods!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]