Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Optimize Random Sampling from Cumulative Probability Matrices in R: Speed Up Your Code!

  • vlogize
  • 2025-10-06
  • 0
Optimize Random Sampling from Cumulative Probability Matrices in R: Speed Up Your Code!
  • ok logo

Скачать Optimize Random Sampling from Cumulative Probability Matrices in R: Speed Up Your Code! бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Optimize Random Sampling from Cumulative Probability Matrices in R: Speed Up Your Code! или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Optimize Random Sampling from Cumulative Probability Matrices in R: Speed Up Your Code! бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Optimize Random Sampling from Cumulative Probability Matrices in R: Speed Up Your Code!

Discover how to efficiently implement random sampling from cumulative probability matrices in R, enhancing performance and reducing runtime with practical tips and code examples.
---
This video is based on the question https://stackoverflow.com/q/64039381/ asked by the user 'Chris Hoover' ( https://stackoverflow.com/u/5216171/ ) and on the answer https://stackoverflow.com/a/64044082/ provided by the user 'ekoam' ( https://stackoverflow.com/u/10802499/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Fast random sampling from matrix of cumulative probability mass functions in R

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Optimize Random Sampling from Cumulative Probability Matrices in R: Speed Up Your Code!

Random sampling from cumulative probability mass functions is a common task in many computational simulations. However, when working with large datasets—like assessing population movement between census tracts—performance can become a critical issue. For instance, processing tasks in R using large matrices for random sampling can suffer from significant slowdowns, making simulations long and tedious.

In this post, we will explore a solution that optimizes the random sampling process from a matrix of cumulative probability mass functions in R. The goal is to enhance performance and reduce runtime using practical tips and techniques.

The Problem: Slow Random Sampling Implementation

Consider a scenario where you're simulating the movement of 1 million agents between census tracts represented by a cumulative probability matrix (mat_cdf). The existing implementation, while functional, has a lengthy execution time that can lead to frustration and hinder productivity.

Sample Code Structure

The original approach to random sampling involved generating random numbers and determining the corresponding column indices in a matrix of cumulative distributions:

[[See Video to Reveal this Text or Code Snippet]]

Runtime Concerns

In this implementation, using the max.col function to identify the first TRUE value in a logical matrix can be inefficient, especially with large datasets, resulting in significant delays.

Solution: Optimize Your Code

Now, let's break down how we can improve this code for better performance.

1. Replace max.col with which

Instead of using max.col, which might be slower due to its complexity, use the which function to directly find the index of the first TRUE:

[[See Video to Reveal this Text or Code Snippet]]

This change reduces computation time because it eliminates the overhead associated with matrix manipulations.

2. Optimize CDF Storage

Instead of storing cumulative distributions in a matrix (mat_cdf), consider using a list structure. This can make it easier and faster to access CDFs without additional overhead from matrix operations.

Updated code for creating the CDF list:

[[See Video to Reveal this Text or Code Snippet]]

3. Refine the Sampling Function

Next, let's implement the optimized functions and compare their performance:

Implementation 1: Original Function

This is your original function with the original logic:

[[See Video to Reveal this Text or Code Snippet]]

Expected Runtime: Slow

Implementation 2: Optimized with which

[[See Video to Reveal this Text or Code Snippet]]

Expected Runtime: Faster!

Implementation 3: Using C+ + with Rcpp

If performance is still an issue, consider implementing the random sampling in C+ + through Rcpp, which can provide significant speed improvements:

[[See Video to Reveal this Text or Code Snippet]]

Expected Runtime: Lightning-fast!

Final Considerations

By implementing the above changes, we aim to improve the runtime performance significantly. As demonstrated in performance testing, we can reduce computation times drastically, leading to faster simulations without sacrificing the integrity of results.

Conclusion

Optimizing random sampling from cumulative probability matrices in R can have a tremendous impact on the efficiency of your simulations. By utilizing appropriate functions, changing data structures, and potentially blending in C+ + for performance-critical components, you can take your simulation work to new speeds.

Now go ahead and apply these strategies to experience swift processing in your computational models!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]