Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding random.choice in Python: Achieving a Uniform Distribution of Values

  • vlogize
  • 2025-05-26
  • 0
Understanding random.choice in Python: Achieving a Uniform Distribution of Values
random.choice in python uniform distribution of elementspythonrandom
  • ok logo

Скачать Understanding random.choice in Python: Achieving a Uniform Distribution of Values бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding random.choice in Python: Achieving a Uniform Distribution of Values или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding random.choice in Python: Achieving a Uniform Distribution of Values бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding random.choice in Python: Achieving a Uniform Distribution of Values

Learn how to use Python's `random.choice` for generating dictionaries with uniformly distributed values, while handling edge cases like negative values and ensuring consistent output.
---
This video is based on the question https://stackoverflow.com/q/67567139/ asked by the user 'Paolo Lorenzini' ( https://stackoverflow.com/u/10370098/ ) and on the answer https://stackoverflow.com/a/67568159/ provided by the user 'ahmed midingoyi' ( https://stackoverflow.com/u/13270153/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: random.choice in python, uniform distribution of elements

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Unraveling random.choice in Python: Achieving a Uniform Distribution of Values

In the world of programming, randomness can sometimes be a source of confusion, especially when you're trying to achieve uniform distribution of values within a certain range. If you're working with Python's random module and specifically using random.choice, you might find yourself asking – how do I ensure that the values generated are uniformly distributed while dealing with specific constraints? Let’s dive into this topic by first framing the problem and then dissecting the solution provided.

The Problem

You’ve created a function in Python that generates dictionaries with nucleotide counts, structured as shown:

[[See Video to Reveal this Text or Code Snippet]]

You want to ensure that values for "G" and "C" (denoted as GC) fall within the range of 40% to 60%. Additionally, you're generating 1000 of these dictionaries but want a uniform distribution of the values selected from this range. You are also concerned about:

Possible negative values in the output.

The fact that your length of generated dictionaries sometimes shows less than expected (999 instead of 1000).

Clarifying whether you need to set weights for your choices.

Dissecting the Solution

Let’s go through each of your concerns one by one.

1. Understanding the Negative Values

First, let's address the issue of negative values. Negative values can arise if the constraints in your function lead to scenarios where the sums exceed the available maximum. In your code:

[[See Video to Reveal this Text or Code Snippet]]

Example:
If you set gcRange = [40,60] and mini = 10, then:

maxC calculates to 50.

If probC happens to select 50 (the maximum), gc would evaluate to [-10, 10], meaning probG could also be selected from a negative range.

2. Fixing the Dictionary Generation Loop

To ensure you generate the correct number of dictionaries (1000 in this case), verify your loop. The len(d) returning 999 could stem from an issue within the loop that might not be appending the final dictionary under certain conditions. Make sure that your loop iterates correctly:

[[See Video to Reveal this Text or Code Snippet]]

3. Ensuring Uniform Distribution

Python’s random.choice does allow for replacement but does not inherently provide a uniform distribution unless you define the distribution itself. If each nucleotide should have equal probability based on specified weights, you could modify your approach:

Use weights in the probabilities: If you want to control the distribution of choices, consider using random.choices(), which allows you to specify weights.

Example Solution with Weights

Here is a modified function based on the input you provided:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In successfully navigating the intricacies of randomness in Python, clear and structured handling of inputs, outputs, and constraints is key. Utilizing random functions wisely can lead to a more predictable output, even when working with ostensibly random elements.

By understanding your parameters and how the random library operates, you'll be better equipped to generate uniformly distributed values in your Python applications. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]