Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Summing Data in Pandas: How to Group By Multiple Conditions Efficiently

  • vlogize
  • 2025-04-16
  • 0
Summing Data in Pandas: How to Group By Multiple Conditions Efficiently
How do I sum up when complying to two conditions and then put the summed data in a new data frame?pythonpandasdataframesum
  • ok logo

Скачать Summing Data in Pandas: How to Group By Multiple Conditions Efficiently бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Summing Data in Pandas: How to Group By Multiple Conditions Efficiently или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Summing Data in Pandas: How to Group By Multiple Conditions Efficiently бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Summing Data in Pandas: How to Group By Multiple Conditions Efficiently

Learn how to sum data in a Pandas DataFrame by multiple conditions and effortlessly create a new DataFrame with the results.
---
This video is based on the question https://stackoverflow.com/q/68246198/ asked by the user 'Prince_persia22' ( https://stackoverflow.com/u/13785648/ ) and on the answer https://stackoverflow.com/a/68246214/ provided by the user 'Anurag Dabas' ( https://stackoverflow.com/u/14289892/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How do I sum up when complying to two conditions and then put the summed data in a new data frame?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Summing Data in Pandas: How to Group By Multiple Conditions Efficiently

Working with data is central to many professions today, and often we face the challenge of aggregating information from various sources. This is particularly true when dealing with time series data recorded under different categories, such as the data frame with dates, categories, and time durations we'll explore in this post.

The Problem

You may find yourself with a Pandas DataFrame like this one, representing activities with their durations:

DateDurationCategory01/01/20210.1Entertainment01/01/20211.4Working01/01/20212.1Entertainment02/01/20217.9Sleeping02/01/20211.2Working02/01/20212.8Working04/01/20216.2SleepingYour goal is to sum the time durations for each unique combination of date and category. The expected output should look like this:

DateEntertainmentWorkingSleeping01/01/20212.21.4002/01/202104.07.903/01/202100004/01/2021006.2Moreover, it's helpful if the solution is flexible enough to accommodate additional categories in the future.

The Solution

To achieve this goal, we can use two main functions from the Pandas library: pivot_table() and pd.crosstab(). Both methods will help us group the data by multiple conditions.

Method 1: Using pivot_table()

This method allows for easy aggregation of data, where we can specify the values to be summed, the index to group by, and the columns representing different categories.

Here's how to do it:

[[See Video to Reveal this Text or Code Snippet]]

Method 2: Using pd.crosstab()

The crosstab() function is equally powerful for summing data across different categories, resulting in a contingency table. It works similarly, aggregating based on specified conditions.

Here’s the code:

[[See Video to Reveal this Text or Code Snippet]]

Understanding the Output

Both methods will output a DataFrame like:

[[See Video to Reveal this Text or Code Snippet]]

Key Takeaways:

Flexibility: Both methods are dynamic and can easily accommodate additional categories as needed.

Zero-filling: Using fill_value=0 or fillna(0) ensures that if a certain category was not present for a date, it will show up with a duration of 0 instead of being excluded from the DataFrame.

Conclusion

Aggregating data by multiple conditions can enhance insights and streamline data reporting. By using pivot_table() or pd.crosstab(), you can sum up your data efficiently in an organized format. Remember, Pandas offers powerful tools to manipulate and analyze your datasets, making it easier to extract meaningful information that drives decision-making.

Now, you're ready to tackle your data analysis tasks more effectively. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]