Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть NeurIPS'25:DenoiseRotator: Enhance Pruning Robustness for LLMs via Importance Concentration

  • Meituan-Tech
  • 2025-12-03
  • 4
NeurIPS'25:DenoiseRotator: Enhance Pruning Robustness for LLMs via Importance Concentration
neuipsneurips2025LLM
  • ok logo

Скачать NeurIPS'25:DenoiseRotator: Enhance Pruning Robustness for LLMs via Importance Concentration бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно NeurIPS'25:DenoiseRotator: Enhance Pruning Robustness for LLMs via Importance Concentration или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку NeurIPS'25:DenoiseRotator: Enhance Pruning Robustness for LLMs via Importance Concentration бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео NeurIPS'25:DenoiseRotator: Enhance Pruning Robustness for LLMs via Importance Concentration

#NeurIPS 2025&Meituan
Pruning is a widely used technique to compress large language models (LLMs) by removing unimportant weights, but it often suffers from significant performance degradation - especially under semi-structured sparsity constraints. Existing pruning methods primarily focus on estimating the importance of individual weights, which limits their ability to preserve critical capabilities of the model. In this work, we propose a new perspective: rather than merely selecting which weights to prune, we first redistribute parameter importance to make the model inherently more amenable to pruning. By minimizing the information entropy of normalized importance scores, our approach concentrates importance onto a smaller subset of weights, thereby enhancing pruning robustness. We instantiate this idea through DenoiseRotator, which applies learnable orthogonal transformations to the model's weight matrices. Our method is model-agnostic and can be seamlessly integrated with existing pruning techniques such as Magnitude, SparseGPT, and Wanda. Evaluated on LLaMA3, Qwen2.5, and Mistral models under 50% unstructured and 2:4 semi-structured sparsity, DenoiseRotator consistently improves perplexity and zero-shot accuracy. For instance, on LLaMA3-70B pruned with SparseGPT at 2:4 semi-structured sparsity, DenoiseRotator reduces the perplexity gap to the dense model by 58%, narrowing the degradation from 8.1 to 3.4 points.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]