Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Is This Function ONE-to-ONE? (Horizontal Line Test Explained!)

  • Bill Kinney
  • 2025-11-25
  • 1954
Is This Function ONE-to-ONE? (Horizontal Line Test Explained!)
one to one functionhorizontal line testinverse functionsgraphing functionsalgebra lessonprecalculus functionsis f one to onegraph fails horizontal line testdistinct inputs distinct outputsmath shortsalgebra helpinverse function definitionfunction behaviormath tutorialgraph interpretationalgebra teacherprecalculus helprising and falling graphinverse rules1-1one to one functions
  • ok logo

Скачать Is This Function ONE-to-ONE? (Horizontal Line Test Explained!) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Is This Function ONE-to-ONE? (Horizontal Line Test Explained!) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Is This Function ONE-to-ONE? (Horizontal Line Test Explained!) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Is This Function ONE-to-ONE? (Horizontal Line Test Explained!)

In this short lesson, I explain why a graph that rises and falls cannot be one-to-one. Using the horizontal line test, we see that different x-values (like around 3 and 4.2) give the same output, which means the function fails the test and does not have an inverse. Great for algebra, precalculus, and early calculus students.

A function is one-to-one if distinct inputs always produce distinct outputs. In this video, I walk through that definition using a real example: a graph that increases, decreases, and clearly repeats outputs for different x-values. By drawing a horizontal line through the region between x ≈ 3 and x ≈ 4.2, we can see it intersects the graph more than once. That’s the horizontal line test in action—and it shows immediately that the function is NOT one-to-one.

Topics covered: 1) What “one-to-one” really means, 2) How to use the horizontal line test, 3) Why failing the test means no inverse function, and 4) Visual understanding instead of memorizing rules. This is a key idea in algebra, precalculus, and the foundations of calculus and inverse functions. The full explanation is available in the long-form video!'

📖 No-Nonsense Algebra: https://amzn.to/4hV5c3j.

Is f ONE-to-ONE?? Definition of One-to-One and the HORIZONTAL LINE TEST

#onetoone #horizontallinetest #functiongraph #algebrahelp #precalculus #calculushelp #mathshorts #mathtutorial #billkinney #billkinneymath

Links and resources
===============================
🔴 Subscribe to Bill Kinney Math: https://www.youtube.com/user/billkinn...
🔴 Subscribe to my Math Blog, Infinity is Really Big: https://infinityisreallybig.com/
🔴 Follow me on Twitter:   / billkinneymath  
🔴 Follow me on Instagram:   / billkinneymath  
🔴 You can support me by buying "Infinite Powers, How Calculus Reveals the Secrets of the Universe", by Steven Strogatz, or anything else you want to buy, starting from this link: https://amzn.to/3eXEmuA.
🔴 Check out my artist son Tyler Kinney's website: https://www.tylertkinney.co/
🔴 Desiring God website: https://www.desiringgod.org/


AMAZON ASSOCIATE
As an Amazon Associate I earn from qualifying purchases.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]