Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Use Pandas to Remove Duplicated Rows Based on Multiple Criteria

  • vlogize
  • 2025-10-10
  • 0
How to Use Pandas to Remove Duplicated Rows Based on Multiple Criteria
Pandas remove duplicated rows by multiple criteriapythonpandas
  • ok logo

Скачать How to Use Pandas to Remove Duplicated Rows Based on Multiple Criteria бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Use Pandas to Remove Duplicated Rows Based on Multiple Criteria или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Use Pandas to Remove Duplicated Rows Based on Multiple Criteria бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Use Pandas to Remove Duplicated Rows Based on Multiple Criteria

Learn how to efficiently remove duplicated rows from a dataframe in `Pandas` using multiple conditions, ensuring your data analysis remains clean and accurate.
---
This video is based on the question https://stackoverflow.com/q/63924441/ asked by the user 'chris_b' ( https://stackoverflow.com/u/14020285/ ) and on the answer https://stackoverflow.com/a/63924498/ provided by the user 'anky' ( https://stackoverflow.com/u/9840637/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Pandas remove duplicated rows by multiple criteria

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Managing Duplicated Rows in Pandas: A Guide

When working with large datasets in Python, particularly using the Pandas library, you may encounter situations where you need to remove duplicated rows based on specific criteria. This task might seem daunting at first, especially when multiple conditions are at play. In this guide, we'll walk through a real-world example to illustrate how to achieve this with ease.

The Problem Statement

Imagine you have a dataframe containing various records, each with an ID, COD1, COD2, GRADE, and DATA. Your goal is to remove rows based on two conditions:

For each unique ID, check if COD1 equals COD2.

Also, check if the GRADE is either 'A' or 'C'.

If both conditions are met for any row with the same ID, you will remove those rows entirely from the dataframe. Let's dive into how to implement this using Pandas.

Sample DataFrame

To illustrate, we will start with the following dataframe:

[[See Video to Reveal this Text or Code Snippet]]

This data contains entries with some duplicated values across different columns.

The Strategy to Remove Duplicates

We will use logical conditions and group operations in Pandas to filter out the unwanted rows. Here's how to do it step by step:

1. Define the Conditions

First, we need to define our conditions using boolean indexing. We'll check if COD1 is equal to COD2 and if GRADE is among the specified grades ('A' or 'C').

[[See Video to Reveal this Text or Code Snippet]]

2. Group By ID and Determine Rows to Keep

Next, we will apply a grouping operation to the dataframe according to ID and use the transform method with any to identify if any of the rows meet the defined conditions within that group.

[[See Video to Reveal this Text or Code Snippet]]

3. Review the Updated DataFrame

After performing the operations, you should have a new dataframe that excludes the unwanted rows. The expected output will look like this:

[[See Video to Reveal this Text or Code Snippet]]

This should output:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By leveraging group operations and boolean indexing in Pandas, you can efficiently cleanse your dataframe by removing rows that match certain criteria. This not only helps maintain the accuracy of your data analysis but also enhances the overall quality of your datasets. Remember, correctly identifying and removing duplicates is a crucial step in ensuring valid results in any data-driven project.

Now, you’re equipped to handle complex filtering tasks in Pandas with confidence! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]